
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021						
Course Course	gramme Name: B.Tech ECE Ser Irse Name: Analog Electronics I. Time		nester: III e: 03 hrs . Marks: 100			
S. No.	SECTION A : (4X5 = 20 M) Attempt all the questions	Marks	COs			
Q 1	For a given the BJT configuration as shown in Fig 1 below, determine: (a) V_i . (b) Z_i . (c) Av_{NL} (d) A_{vs} . $ \begin{array}{c} I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ + & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ I_i = 10 \mu A \\ - & V_i \\ - & $	4	CO1			
Q 2	Determine the oprating region for the given MOSFET configurations as shownin fig 2? $2.0V \rightarrow 1.2V$ $32V$ 32V	4	CO2			

Enrolment No:

Name:

UPES

Q 3	Sketch the equivalent hybrid model for CE npn BJT and mention all the hybrid model parameters.	4	CO1
Q4	Explain the pinch off condition in JFETs and its impact over the drain current. Sketch the N channel JFET with proper regions?	4	CO2
Q5	Mention the impact of cascade network of amplifiers on the overall gain and the bandwidth of the amplifier. Explain by considering the frequency response?	4	CO4
	SECTION B : (4X10 = 40M) Attempt All the questions		
Q 6	Sketch the curve of $I_D = 0.5*10^{-3}(V_{GS})^2$ and $I_D = 0.5*10^{-3}(V_{GS} - 4)^2$ for V_{GS} from 0 to 10 V. Does $V_T = 4$ V have a significant impact on the level of I_D for this region?	10	CO2
Q7	(a) Determine the operating point of the given amplifier as shown in Fig 3 under DC analysis? Evaluate the following performance parameters of the given CE amplifier below (b) Find Zi and Zo. (c) Calculate Av and Ai. $\int_{I_1}^{0} \int_{I_2 \log I_2}^{0} \int_{I_2 \log I_2}^{$	10	C03
Q8	(a)Analyze the Characteristics of Enhancement type and Depletion type MOSFET? (b)Draw the transfer and output characteristics of N- channel JFET and elaborate on the input impedance of the JFET? OR Compute the Gate capacitance C_G , gate to drain capacitance C_{GD} , gate to source capacitance for the Fig. 4. Consider the overlapping capacitances $C_{GSO} = C_{GDO} = 5$ fF/m ² . What will be effects on these capacitances when horizontal dimension are scaled by 1/4 and vertical dimensions by 1/3.	10	CO2

	Fig. 6		
Q11	The fixed-bias common source configuration having an operating point defined by $VGS_Q = 2$ V and $ID_Q = 5.625$ mA, with $ID_{SS} = 10$ mA and $VGS_{OFF} = -8$ V. The network configuration is shown in Fig. 7 with an applied input signal Vi. The value of Yo is provided as 50 μ S. (a) Determine gm. (b) Find rd. (c) Determine Zi. (d) Calculate Zo. (e) Determine the voltage gain Av. +18 V +18 V +18 V - I_{ISV} - (a) Determine the voltage for the voltage	20	CO3
	Fig. 7		
	OR		
	(a) Explain why it is important to set the Q point at the middle of the DC load line. Draw the proper DC load line on output characteristics for common emitter configuration(b) Describe the thermal run away condition in BJTs and how it affects the operating point of an amplifier.		