

Q8.	Explain the significance of LT in determining the Initial and Final values of a function in time domain. Find the initial value and final value of the function $X(s)=\frac{(s+6)}{\left(s^{2}-3 s+2\right)}$	10	CO3
Q9.	Determine the voltage across the resistor as a function of time for $\mathrm{t}>0$. If the current in the circuit $\mathrm{i}(0)=\mathrm{Vc}(0)=0$ from the figure 1 using suitable transform. Fig 1	10	CO4
	SECTION C	$2 \mathrm{Q} \times 20=40$	
Q10.	a. Determine the Z.T and ROC of the causal sequence $x[n]=\{\mathbf{1}, 2,-2,-4,1\}$ b. Determine Z.T and ROC of a function $y[n]=(2 / 3)^{n} u[n]+(-1 / 4)^{n} u[n]$. c. Consider the signal $x[n]=\left(\frac{1}{5}\right)^{n} u[n-4]$, Evaluate the z-transform of this signal and specify the corresponding region of convergence	20	CO4
Q11.	a. A causal LTI system is described by the difference equation $y(n)=y(n-1)+y(n-2)+x(n)+2 x(n-1)$ Determine the system function and frequency response of the system. Plot the poles and zeroes and indicate the ROC. Determine the stability and impulse response of the system. b. Using the properties of inverse Fourier transform, of c. $X(j \omega)=\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)$ d. $\quad X(j \omega)=\frac{1}{(1+j \omega)^{2}}$	$\begin{gathered} {[12+4+} \\ 4] \end{gathered}$	CO4

	(OR) e. Find inverse Laplace transform of $\mathrm{X}(\mathrm{S})=$ $\frac{s+1}{(s+2)(s+3)}$ f. D.T.FT of the signal (i) $x[n]=\{1,-1,2,2\}$ $\text { (ii) } x[n]=a^{n} u[n]$ g. Using Z.T find convolution of two sequences $X_{1}[n]==\{1,2,-1,1,3\} \& X_{2}[n]==\{1,4,-1\}$	$\begin{gathered} {[6+6+8} \\] \end{gathered}$	

