Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2021

Course: Signals and System

Program: B.Tech Electronics & Commn Engg and B.Tech Mechatronics

Time 03 hrs.

Course Code: ECEG 2010 Max. Marks: 100

Instructions:

- Attempt all questions as per the instruction.
- Assume any data if required and indicate the same clearly.
- Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A 5Qx 4=20 Write only answer in the text box(for S.No:1 & 2 write ONLY the final answer)

S. No.	Question	Marks	CO
Q1.	Find the even and odd components of the signal $x(t)$ =Cos t + Sin t .	4	CO1
Q2.	Define energy of the signal and find whether the given $x(n) = \left(\frac{1}{4}\right)^n u(n)$ is an energy signal or power signal	4	CO2
Q3.	List the Applications of Laplace transform with examples.	4	CO2
Q4.	Distinguish Fourier transform and Laplace Fourier transform	4	CO3
Q5.	Define convolution.	4	CO3
	4(Qx10=40	
Q6.	(i)Sketch the waveforms of the following signals: (a) if $x(t) = u(t-3) - u(t-1)$ (b) $x(t) = e^{-2t}u(-2+t)$ (ii)Name the signals whether they are causal and non causal? (a) $x(t) = e^{2t}u(t+2)$ (b) $y(t) = u[t-4] - u[t-2]$ (c) $x[n] = \{1,-1,2,2\}$ (d) $x[n] = 2^n u[n]$	6+4	CO1
Q7.	Find the Fourier Transform of (i) $x(t) = e^{-2t} u(t+6)$ (ii) $x(t) = \sin\omega t u(t)$	10	CO2

Q8.	Explain the significance of LT in determining the Initial and Final values of a function in time domain. Find the initial value and final value of the function $X(s) = \frac{(s+6)}{(s^2-3s+2)}$	10	CO3
Q9.	Determine the voltage across the resistor as a function of time for t>0. If the current in the circuit $i(0) = Vc(0)=0$ from the figure 1 using suitable transform. $ \frac{1H}{v_{c}(t)} = \frac{0.5F}{v_{c}(t)} $ Fig 1	10	CO4
	SECTION C	20	Qx20=40
Q10.	 a. Determine the Z.T and ROC of the causal sequence x[n]={1,2,-2,-4,1} b. Determine Z.T and ROC of a function y[n]=(2/3)ⁿ u[n]+ (-1/4)ⁿ u[n]. c. Consider the signal x[n] = (1/5)ⁿ u[n - 4], Evaluate the z-transform of this signal and specify the corresponding region of convergence 	20	CO4
Q11.	a. A causal LTI system is described by the difference equation $y(n)=y(n-1)+y(n-2)+x(n)+2x(n-1)$ Determine the system function and frequency response of the system. Plot the poles and zeroes and indicate the ROC. Determine the stability and impulse response of the system. b. Using the properties of inverse Fourier transform, of $c. X(j\omega) = \pi\delta(\omega-\omega_0) + \pi\delta(\omega+\omega_0)$ $d. \qquad X(j\omega) = \frac{1}{(1+j\omega)^2}$	[12+4+ 4]	CO4

(OR)

e. Find inverse Laplace transform of X(S)= $\frac{s+1}{(s+2)(s+3)}$ f. D.T.FT of the signal (i) $x[n]=\{1,-1,2,2\}$ (ii) $x[n]=a^nu[n]$ g. Using Z.T find convolution of two sequences $x_1[n]==\{1,2,-1,1,3\}\&\ x_2[n]==\{1,4,-1\}$