Name:				
Enrolment No:				
~	End Semeste	ROLEUM AND ENERGY STUDIES er Examination, Dec 2021		
	: Fluid Mechanics (MECH 2023) mme: B.Tech ADE	Semester: III Time: 3 hrs		
_	Iarks: 100			
Instruct	ions: All the questions are compulsory. Plea	ase assume suitable data if missing.		
	Se	ection-A (5x4)		
Q. No	Statement		Marks	СО
Q.1	Differentiate between streamlined and blue	uff bodies.	4	CO1
Q.2	Enlist the limitations of Bernoulli's theory	em.	4	CO2
Q.3	"The existence of stream function is the co the statement.	ompliance of the flow to be continuous". Justify	4	CO1
Q.4	Discuss the stability criteria for floating a	and completely submerged bodies.	4	CO1
Q.5	Explain the term Laminar sublayer.		4	CO1
	Se	ction-B (4x10)		
Q.6	Derive Euler's equation of motion along a equation.	streamline and integrate it to obtain Bernoulli's	10	CO2
Q.7	 For a two-dimensional fluid flow the velocity of a x²-y². i. Determine the velocity component in ii. Show that the velocity components irrotationality. 		10	CO2
Q.8		e boundary layer on a flat plate, calculate the a terms of the nominal boundary layer thickness	10	CO4
Q.9	The tank in figure is 3 m wide into the pa	per. Neglecting atmospheric pressure, compute $b, (b)$ vertical force on BC, (c) resultant force on	10	CO3

Q.11	Establish relationship between shear stress and pressure distribution for laminar flow between two fixed parallel plates. Also, prove that for a steady laminar flow between two fixed parallel plates, the velocity distribution across a section is parabolic and that the average velocity is 2/3 rd of the maximum velocity. (20 marks) OR a) A truck having a projected area of 6.5 m ² travelling at 70 km/hr has a total resistance of 2000 N. Of this 20% is due to the rolling friction and 10% due to surface friction. The rest is due to drag friction. Make calculations for coefficient of form drag. (8 marks) b) A passenger car with frontal projected area of 1.5 m ² travels at 56 km/hr. Determine the power required to overcome wind resistance if the drag coefficient of car is 0.4. For the same power extended in overcoming resistance, find possible percentage change in speed if drag coefficient is reduced to 0.32 by streamlining the car body. (12 marks)	20	CO4
------	---	----	-----