Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2021 Course: Fluid Mechanics (MECH 2023) Semester: III Programme: B.Tech ADE Max. Marks: 100			
Instructions: All the questions are compulsory. Please assume suitable data if missing.			
Section-A (5x4)			
Q. No	Statement	Marks	CO
Q. 1	Differentiate between streamlined and bluff bodies.	4	CO1
Q. 2	Enlist the limitations of Bernoulli's theorem.	4	CO2
Q. 3	"The existence of stream function is the compliance of the flow to be continuous". Justify the statement.	4	CO1
Q. 4	Discuss the stability criteria for floating and completely submerged bodies.	4	CO1
Q. 5	Explain the term Laminar sublayer.	4	CO1
Section-B (4x10)			
Q. 6	Derive Euler's equation of motion along a streamline and integrate it to obtain Bernoulli's equation.	10	CO2
Q. 7	For a two-dimensional fluid flow the velocity function is given by the expression $\emptyset=x^{2}-y^{2}$. i. Determine the velocity component in x and y directions. ii. Show that the velocity components satisfy the conditions of flow continuity and irrotationality. iii. Determine stream function and flow rate between the streamlines $(2,0)$ and $(2,2)$.	10	CO2
Q. 8	For the following velocity profile in the boundary layer on a flat plate, calculate the displacement and momentum thickness in terms of the nominal boundary layer thickness δ. $\mathbf{u} / \mathbf{U}=2 \boldsymbol{\eta}-2 \eta^{3}+\boldsymbol{\eta}^{4}$ Where $\boldsymbol{\eta}=\mathbf{y} / \delta$	10	CO4
Q. 9	The tank in figure is 3 m wide into the paper. Neglecting atmospheric pressure, compute the hydrostatic (a) horizontal force on BC, (b) vertical force on BC, (c) resultant force on BC	10	CO 3

Q.11	Establish relationship between shear stress and pressure distribution for laminar flow between two fixed parallel plates. Also, prove that for a steady laminar flow between two fixed parallel plates, the velocity distribution across a section is parabolic and that the average velocity is $2 / 3^{\text {rd }}$ of the maximum velocity. (20 marks) OR		
	a) A truck having a projected area of $6.5 \mathrm{~m}^{2}$ travelling at $70 \mathrm{~km} / \mathrm{hr}$ has a total resistance of 2000 N. Of this 20% is due to the rolling friction and 10% due to surface friction. The rest is due to drag friction. Make calculations for coefficient of form drag. (8 marks)	$\mathbf{2 0}$	$\mathbf{C O 4}$
b) A passenger car with frontal projected area of $1.5 \mathrm{~m}^{2}$ travels at $56 \mathrm{~km} / \mathrm{hr}$. Determine the power required to overcome wind resistance if the drag coefficient of car is 0.4 . For the same power extended in overcoming resistance, find possible percentage change in speed if drag coefficient is reduced to 0.32 by streamlining the car body. (12 marks)			

