Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

End Semester Examination, December 20

Course: Engineering Thermodynamics Program: B. Tech. (APE-Gas) Course Code: MECH 2001 Semester : III Time : 3 hr Max. Marks : 100

Instructions: Assume any missing data. The notations used here have the usual meanings. Draw the diagrams, wherever necessary.

	SECTION - A (5 ×4 = (Answer all the que	ks)			
S. No.				Marks	CO
1.	Steam at 14 bar and 315 °C (state 1) enters a turbine the velocity of 3 m/s. The exhaust from the turbine is carri pipe and is at 0.35 bar and 93 °C (state 2). What is the Property values are: $H_1 = 3074.5 \text{ kJ/kg}$ $V_1 = 0.1909 \text{ m}$ $H_2 = 2871.6 \text{ kJ/kg}$	4	CO2		
2.	Heat in the amount of 150 kJ is transferred directly from to two cooler reservoirs at $T_1 = 350$ K and $T_2 = 250$ K. $T_{\sigma} = 300$ K. If the heat transferred to the reservoir at T reservoir at T_2 , Calculate the lost work.	4	CO2		
3.	1 kmol of ethylene is contained in a 0.6 m³ steel v temperature bath at 200 °C. Determine the pressure deve der Waals equation of state. For ethylene: $T_c = 283.1$ K, assigned for equations of state are:Equation of state $\alpha(T_r)$ σ ε Van der Waals (vdW)100	g the van	4	CO3	

4.	Components A and B form ideal solution. At 350 K, a liquid mixture containing 40 %		
	(mole) A is in equilibrium with a vapor containing 70 % (mole) A. If the vapor pressure	4	CO4
	of A at 350 K is 70 kPa. What is the vapor pressure of B?		
5.	Discuss Linde liquefaction process with the help of a neat sketch.	4	CO5
	SECTION - B $(4 \times 10 = 50 \text{ marks})$ (Answer all the questions)	I I	
S. No.		Marks	CO
1.	An ideal gas is initially at a pressure of 0.1 MPa and a total volume of 2 m ³ . It is		
	compressed to 1 MPa by a reversible adiabatic process and then cooled at constant	10	CO1
	pressure to a final volume of 0.2 m ³ . Calculate the work done in kJ on the gas for the		
	entire process. The heat capacity at constant pressure, $C_p = 2.5$ R.		
2.	A Carnot engine is coupled to Carnot refrigerator so that all of the work produced by the		
	engine is used by the refrigerator in the extraction of heat from a heat reservoir at 273.15		
	K at the rate of 35 kW. The source of energy for the Carnot engine is a heat reservoir at	10	CO2
	523.15 K. If both the devices discard heat to the surroundings at 298.15 K, how much		
	heat does the engine absorb from its heat source reservoir?		
3.	At 298.15 K and atmospheric pressure, the volume change of mixing of binary liquid		
	mixtures of species 1 and 2 is given by the equation:		
	$\Delta V = x_1 x_2 (45 x_1 + 25 x_2)$		CO3
	where ΔV is in cm ³ /mol. At these conditions, $V_1 = 110$ and $V_2 = 90$ cm ³ /mol. Determine	10	
	the partial molar volumes \overline{V}_1 and \overline{V}_2 in a mixture containing 40 mol % of the species 1 at		
	the given conditions.		
4.	The stream from a gas well is a mixture containing 50% methane, 10 % ethane, 20%		
	propane and 20 % n-butane. The composition is expressed in mole percent. This stream		
	is fed into a partial condenser maintained at a pressure of 17.24 bar, where its temperature		
	is brought to 27 ^o C. Determine	10	CO4
	(a) the molar fraction of the gas that condenses		
	(b) the composition of the liquid and vapor phase leaving the condenser.		
	The K-values for system of light hydrocarbons are given in Fig. 1.		
	SECTION – C (2 × 20 = 40 marks) (Answer all the questions)		

1.	Find the values of Compressibility factor Z, residual enthalpy HR and residual entropy SR for propane at 375 K and (xx) bar as given by Redlich/Kwong equation, where (xx) are the last two digits of your SAP ID. For propane: Tc = 369.8 K, Pc = 42.48 bar and ω = 0.152.Equation of state $\alpha(T_r)$ σ ϵ Ω Ψ Z_c Redlich/Kwong (RK) $T_r^{-1/2}$ 100.086640.427481/3						20	C03	
	OR								
	The expressions for activity coefficient of species 1 and 2 in a binary liquid mixture at a								
	given T and P are:								
	$\ln \gamma_1 = x_2^2 \ (0.273 + 0.096 \ x_1)$							20	
	$\ln \gamma_2 = x_1^2 (0.273 - 0.096 x_1)$								
	(i) Determine the implied expression for G^{E}/RT .								
	(ii) Verify Gibbs/Duhem equation.								
2.	A vapor compression refrigeration cycle with tetrafluoroethane as refrigerant operates								
	with an evaporation temperation	with an evaporation temperature of -12 0 C and a condensation temperature of 27 0 C							
	Determine the coefficient of performance for (a) Assuming isentropic compression of vapor								
								20	CO5
	(b) Assuming a compressor efficiency of 75%.Thermodynamic properties of saturated tetrafluoroethane and PH-diagram of tetrafluoroethane are given in Table 1 and Figure 2, respectively.								

Table: 1 Thermodynamic properties of Saturated Tetrafluoroethane

Temperature (⁰ C)	Saturation pressure MPa	Liquid density kg/m ³	Specific volume of vapor m ³ /kg	Enthalpy (kJ/kg)			Entropy (kJ/kg-K)		
	Р	ρ^{1}	$\mathbf{V}^{\mathbf{v}}$	H^{1}	H ^v	S^1	S ^v		
-12	0.18516	1331.8	0.10749	184.16	391.55	0.9410	1.7351		
24	0.64566	1210.1	0.03189	233.05	411.93	1.1149	1.7169		
28	0.72676	1194.9	0.02829	238.77	413.95	1.1338	1.7155		

Figure 1: K- values for system of light hydrocarbons

