Name: Enrolment No:									
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 Course: Engineering Thermodynamics Program: B. Tech. (APE-Gas) Course Code: MECH 2001 Instructions: Assume any missing data. The notations used here have the usual meanings. Draw the diagrams, wherever necessary.									
SECTION - A ($5 \times 4=20$ marks) (Answer all the questions)									
S. No.								Marks	CO
1.	Steam at 14 bar and $315{ }^{\circ} \mathrm{C}$ (state 1) enters a turbine through a 75 mm diameter with a velocity of $3 \mathrm{~m} / \mathrm{s}$. The exhaust from the turbine is carried through a 250 mm diameter pipe and is at 0.35 bar and $93{ }^{\circ} \mathrm{C}$ (state 2). What is the power output of the turbine. Property values are:$\begin{array}{ll} \mathrm{H}_{1}=3074.5 \mathrm{~kJ} / \mathrm{kg} & \mathrm{~V}_{1}=0.1909 \mathrm{~m}^{3} / \mathrm{kg} \\ \mathrm{H}_{2}=2871.6 \mathrm{~kJ} / \mathrm{kg} & \mathrm{~V}_{2}=4.878 \mathrm{~m}^{3} / \mathrm{kg} \end{array}$							4	CO2
2.	Heat in the amount of 150 kJ is transferred directly from a hot reservoir at $\mathrm{T}_{\mathrm{H}}=550 \mathrm{~K}$ to two cooler reservoirs at $\mathrm{T}_{1}=350 \mathrm{~K}$ and $\mathrm{T}_{2}=250 \mathrm{~K}$. The surrounding temperature is $T_{\sigma}=300 \mathrm{~K}$. If the heat transferred to the reservoir at T_{1} is half that transferred to the reservoir at T_{2}, Calculate the lost work.							4	CO2
3.	1 kmol of ethylene is contained in a $0.6 \mathrm{~m}^{3}$ steel vessel immersed in a constant temperature bath at $200{ }^{\circ} \mathrm{C}$. Determine the pressure developed by the gas using the van der Waals equation of state. For ethylene: $\mathrm{T}_{\mathrm{c}}=283.1 \mathrm{~K}, \mathrm{P}_{\mathrm{c}}=51.17 \mathrm{bar}$ and parameters assigned for equations of state are:							4	$\mathrm{CO3}$
	Equation of state Van der Waals (vdW)	$\begin{gathered} \alpha\left(\mathrm{T}_{\mathrm{r}}\right) \\ 1 \end{gathered}$	σ 0	0	Ω $1 / 8$	$\begin{gathered} \Psi \\ \hline 27 / 64 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Z}_{\mathrm{c}} \\ \hline 3 / 8 \end{array}$		

4.	Components A and B form ideal solution. At 350 K , a liquid mixture containing 40 \% (mole) A is in equilibrium with a vapor containing 70% (mole) A . If the vapor pressure of A at 350 K is 70 kPa . What is the vapor pressure of B ?	4	CO4
5.	Discuss Linde liquefaction process with the help of a neat sketch.	4	$\mathrm{CO5}$
SECTION - B ($\mathbf{4} \times \mathbf{1 0}=\mathbf{5 0}$ marks) (Answer all the questions)			
S. No.		Marks	CO
1.	An ideal gas is initially at a pressure of 0.1 MPa and a total volume of $2 \mathrm{~m}^{3}$. It is compressed to 1 MPa by a reversible adiabatic process and then cooled at constant pressure to a final volume of $0.2 \mathrm{~m}^{3}$. Calculate the work done in kJ on the gas for the entire process. The heat capacity at constant pressure, $\mathrm{C}_{\mathrm{p}}=2.5 \mathrm{R}$.	10	CO1
2.	A Carnot engine is coupled to Carnot refrigerator so that all of the work produced by the engine is used by the refrigerator in the extraction of heat from a heat reservoir at 273.15 K at the rate of 35 kW . The source of energy for the Carnot engine is a heat reservoir at 523.15 K. If both the devices discard heat to the surroundings at 298.15 K , how much heat does the engine absorb from its heat source reservoir?	10	CO 2
3.	At 298.15 K and atmospheric pressure, the volume change of mixing of binary liquid mixtures of species 1 and 2 is given by the equation: $\Delta V=x_{1} x_{2}\left(45 x_{1}+25 x_{2}\right)$ where $\Delta \mathrm{V}$ is in $\mathrm{cm}^{3} / \mathrm{mol}$. At these conditions, $\mathrm{V}_{1}=110$ and $\mathrm{V}_{2}=90 \mathrm{~cm}^{3} / \mathrm{mol}$. Determine the partial molar volumes \bar{V}_{1} and \bar{V}_{2} in a mixture containing $40 \mathrm{~mol} \%$ of the species 1 at the given conditions.	10	$\mathrm{CO3}$
4.	The stream from a gas well is a mixture containing 50\% methane, 10% ethane, 20\% propane and 20% n-butane. The composition is expressed in mole percent. This stream is fed into a partial condenser maintained at a pressure of 17.24 bar , where its temperature is brought to $27^{\circ} \mathrm{C}$. Determine (a) the molar fraction of the gas that condenses (b) the composition of the liquid and vapor phase leaving the condenser. The K-values for system of light hydrocarbons are given in Fig. 1.	10	CO4
SECTION - C ($2 \times 20=40$ marks $)$ (Answer all the questions)			

Table: 1 Thermodynamic properties of Saturated Tetrafluoroethane

Temperature $\left({ }^{0} \mathrm{C}\right)$	Saturation pressure MPa	Liquid density $\mathrm{kg} / \mathrm{m}^{3}$	Specific volume of vapor $\mathrm{m}^{3} / \mathrm{kg}$	Enthalpy $(\mathrm{kJ} / \mathrm{kg})$		Entropy $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$	
	P	ρ^{1}	$\mathrm{~V}^{\mathrm{v}}$	H^{l}	H^{v}	S^{1}	$\mathrm{~S}^{\mathrm{v}}$
	0.18516	1331.8	0.10749	184.16	391.55	0.9410	1.7351
24	0.64566	1210.1	0.03189	233.05	411.93	1.1149	1.7169
28	0.72676	1194.9	0.02829	238.77	413.95	1.1338	1.7155

Figure 1: K- values for system of light hydrocarbons

