

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2021**

Course: Differential Equations Program: B.Sc.(H)Phy/Chem/Geology Course Code: MATH 1034

: III Semester : 03 hrs. Duration Max. Marks: 100

Instructions: All questions are compulsory.

	SECTION A (Seen and unlead) (50)	411 - 24) Manka)
	(Scan and upload) (5Q2	x 4M = 20 Marks	COs
Q 1	Find the differential equation for the equation $(x - \alpha)^2 + y^2 = \alpha^2$, where α is an arbitrary constant. Also find the order of differential equation.		CO1
Q 2	Solve the differential equation $xyp^2 + p(3x^2 - 2y^2) - 6xy = 0$ for p . Here p stands for $\frac{dy}{dx}$.	[4]	CO2
Q 3	Find the complete solution of the following differential equation: $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = e^{5t}$	[4]	CO3
Q 4	Solve for $x = f(z)$ in the following simultaneous equations $\frac{dx}{dz} - x + y = z^2, \qquad \frac{dx}{dz} + x - \frac{dy}{dz} = z$	[4]	CO4
Q 5	Classify the following partial differential equation (a) $2\frac{\partial^2 u}{\partial t^2} + 4\frac{\partial^2 u}{\partial x \partial t} + 3\frac{\partial^2 u}{\partial x^2} = 0$ (b) $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$	[4]	CO5
	SECTION B (Scan and upload) (4Qx	x10M = 40) Marks)
Q 1	Show that the differential equation of a curve $a^2x^2 + 2abxy + b^2y^2 + 2gx + 2fy + c = 0$ is $\frac{d^2}{dx^2} \left\{ \frac{d^2y}{dx^2} \right\}^{-2/3} = 0$	[10]	CO1
Q 2	Solve the following exact differential equation: $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$	[10]	CO2
	Obtain the solution for the following differential equation for y	[10]	CO2

	Find the complete solution of $2(z + px + qy) = yp^2$ where $p = \frac{\partial z}{\partial x}$ and		
Q 4	$q = \frac{\partial z}{\partial y}.$ OR	[10]	CO5
	Solve $x(x^2 + 3y^2)\frac{\partial z}{\partial x} - y(3x^2 + y^2)\frac{\partial z}{\partial y} = 2z(y^2 - x^2).$		
	SECTION-C		
	(Scan and upload) (2Qx	20M= 40	Marks)
Q 1A	Solve the following simultaneous equations: $D^2x - 3x - 4y = 0$, $D^2y + x + y = 0$ <i>D</i> stands for $\frac{d}{dx}$	[10]	CO4
Q 1B	Solve: $y^{2}z(x\cos x - \sin x)dx + x^{2}z(y\cos y - \sin y)dy$	[10]	CO4
	$+ xy(y\sin x + x\sin y + xy\cos z)dz = 0$		001
Q 2A	Use Variation of parameter method to solve the following differential equation $(D^2 + 1)y = \frac{1}{1 + \sin x}, D \equiv \frac{d}{dx}$ Obtain the complete solution of differential equation $(D^2 + 2)z = t^2 e^{3t} \cos 2t, D \equiv \frac{d}{dt}$	[10]	CO3
Q 2B	Solve the differential equation $x^2 \frac{d^3y}{dx^3} + 2x \frac{d^2y}{dx^2} + 3 \frac{dy}{dx} - \frac{3}{x}y = x + 1$ OR Find the solution of differential equation $(D^2 - 1)y = 1$, which vanishes when $x = 0$ and tends to a finite limit as $x \to \infty$ and D stands for $\frac{d}{dx}$.	[10]	CO3