Name: Enrolment No:		
Course Progra Course	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2021 : Fluid Mechanics Semester: III m: B. Tech. FSE Time 03 hrs. Code: MECH 2023 Max. Marks: 100	
Each Question carries 5 Marks SECTION A		
S. No.	Question	CO
Q 1	Define: a. Steady and unsteady flow b. Uniform and non-uniform flow c. Laminar and turbulent flow d. Compressible and non-compressible flow	CO1
Q 2	Explain the effect of temperature on viscosity of water and that of air.	CO2
Q 3	How pressure force is related with surface tension on a hollow liquid bubble?	CO2
Q 4	Describe the relationship between Bulk modulus and Pressure of a gas for adiabatic process.	CO2
Q 5	Describe the principles of floatation and stability	CO1
Each Question carries 10 Marks SECTION B		
Q 6	A fluid flow field is given by $V=x^{2} y i+y^{2} z j-\left(2 x y z+y z^{2}\right) k$ Prove that it is a case of possible steady incompressible fluid flow. Calculate velocity and acceleration at the point $(2,1,3)$.	CO4
Q 7	If, cross sectional area of pipe and throat of a venturimeter are a_{1} and a_{2} respectively. Then, derive the expression of actual flow rate: $Q_{a c t}=C_{d} * \frac{a_{1} a_{2}}{{\sqrt{a_{1}^{2}-a_{2}^{2}}}^{2}} * \sqrt{2 g h}$ Where, " h " is difference of pressure head and " C_{d} " is coefficient of discharge.	CO 3
Q 8	Derive Euler's equation of motion: $\frac{d p}{\rho}+g d z+v d v=0$	CO 3
Q 9	Derive the equation for Minor energy (head) loss in pipe flow due to sudden enlargement.	$\mathrm{CO3}$

Section C

Each Question carries 20 Marks.

Q 10	A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter id suddenly enlarged to 300 mm . the height of water level in the tank is 8 m above the Centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take, coefficient of friction is 0.01 for both section of pipe.	CO5
Q 11	Find the convective acceleration at the middle of a pipe which converges uniformly from 0.4 m diameter to 0.2 m over 2 m length. a. If the rate of flow is $20 \mathrm{~L} / \mathrm{s}$. b. If the rate of flow changes uniformly from $20 \mathrm{~L} / \mathrm{s}$ to $40 \mathrm{~L} / \mathrm{s}$ in 30 seconds, find the total acceleration at the middle of the pipe.	CO4

