15 UPES
 UNIVERSITY WITH A PURPOSE
 UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, December 2021

Course: Multivariate Calculus
Program: B.Sc (Hons.) Mathematics
Semester: III

Course Code: MATH-2029
Duration: 03 hrs.
Max. Marks : 100

Instructions:

1. All questions are compulsory.

SECTION A

(5Q x 4M = 20Marks)

S. No.		Marks	COs
Q1	If u is a homogenous function of degree n in x and y, then show that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=n(n-1) u$.	4	CO1
Q2	State and prove the relation between Beta and Gamma functions.	4	CO 2
Q3	Evaluate $\int_{0}^{\pi} \int_{0}^{a(1-\cos \theta)} r^{2} \sin \theta d r d \theta$	4	CO2
Q4	Show that $\vec{A}=\left(6 x y+z^{3}\right) \hat{\imath}+\left(3 x^{2}-z\right) \hat{\jmath}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational.	4	CO3
Q5	Evaluate the following triple integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$	4	CO 2

SECTION B		(4Q x 10M = 40Marks)					
S. No.	COs Q1 Qinimum distances of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=1$.					$\mathbf{1 0}$	$\mathbf{C O 1}$
Q2	Prove the following identities: (a). $\operatorname{div}(\operatorname{curl} \vec{V})=\nabla \cdot(\nabla \times \vec{V})=0$ (b). $\operatorname{curl}(\operatorname{curl} \vec{V})=\operatorname{grad}(\operatorname{div} \vec{V})-\nabla^{2} \vec{V}$	$\mathbf{1 0}$	$\mathbf{C O 3}$				

Q3	If $\frac{x^{2}}{2+u}+\frac{y^{2}}{4+u}+\frac{z^{2}}{6+u}=1$, prove that $\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}=2\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}\right)$	10	CO1
Q4	By changing to cylindrical coordinates, find the volume of the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying inside the cylinder $x^{2}+y^{2}=a y$. OR State and prove Liouville's extension of Dirichlet's theorem. Hence, evaluate $\iiint \log (x+y+z) d x d y d z$, the integral extending over all positive and zero values of x, y, z subject to $x+y+z<1$.	10	CO 2
	SECTION C	(2Q x 20M = 40Marks)	
S. No.		Marks	COs
Q1	Find the volume bounded by the solid $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}+\left(\frac{z}{c}\right)^{2 / 3}=1$.	20	CO 2
Q2	Verify Gauss's divergence theorem for $\vec{F}=2 x^{2} y \hat{\imath}-y^{2} \hat{\jmath}+4 x z^{2} \hat{k}$ over the region bounded by the cylinder $y^{2}+z^{2}=9$ and the plane $x=2$ in the first octant. OR Verify Stokes' theorem for $\vec{F}=(y-z) \hat{\imath}+y z \hat{\jmath}-x z \hat{k}$ where S is the region bounded by the planes $x=0, x=1, y=0, y=1, z=0$ and $z=1$ above the xy-plane.	20	CO3

