

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Multivariate Calculus Program: B.Sc (Hons.) Mathematics Course Code: MATH-2029 Semester: III Duration: 03 hrs. Max. Marks : 100

Instructions:

1. All questions are compulsory.

	SECTION A		(5Q x 4M = 20Marks)	
S. No.		Marks	COs	
Q1	If u is a homogenous function of degree n in x and y, then show that $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u.$	4	CO1	
Q2	State and prove the relation between Beta and Gamma functions.	4	CO2	
Q3	Evaluate $\int_0^{\pi} \int_0^{a(1-\cos\theta)} r^2 \sin\theta dr d\theta$	4	CO2	
Q4	Show that $\vec{A} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$ is irrotational.	4	CO3	
Q5	Evaluate the following triple integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz.$	4	CO2	
	SECTION B	(4Q x 10M	= 40Marks)	
S. No.		Marks	COs	
Q1	Using Lagrange's method of undetermined multipliers, find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.	10	C01	
Q2	Prove the following identities: (a). $div(curl \vec{V}) = \nabla . (\nabla \times \vec{V}) = 0$ (b). $curl(curl \vec{V}) = grad (div \vec{V}) - \nabla^2 \vec{V}$	10	CO3	

Q3	If $\frac{x^2}{2+u} + \frac{y^2}{4+u} + \frac{z^2}{6+u} = 1$, prove that $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right)$	10	CO1	
Q4	By changing to cylindrical coordinates, find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ lying inside the cylinder $x^2 + y^2 = ay$. OR State and prove Liouville's extension of Dirichlet's theorem. Hence, evaluate $\iiint \log(x + y + z) dx dy dz$, the integral extending over all positive and zero values of <i>x</i> , <i>y</i> , <i>z</i> subject to $x + y + z < 1$.	10	CO2	
SECTION C			(2Q x 20M = 40Marks)	
S. No.				
		Marks	COs	
Q1	Find the volume bounded by the solid $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1.$	20	COs CO2	