Name: Enrolment No: SAP ID:		1 UPES UNIVERSITY WITH A PURPOSE	
Cour Progr Time Max. All qu	\[\) UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 Group Theory I \]I BSc. (Hons) Mathematics hrs. arks: 100Semester: IIItions are compulsory.	MAT	
Instructions: Each question will carry 4marks			
Q 1	Show that every cyclic group is an abelian group.	4M	CO2
Q 2	Let G be a group and let $a \in G$ be of finite order n. Then for any integer k, prove that order of $a^{k}=\frac{x}{(n, k)}$ where ($\left.n, k\right)$ denotes the H.C.F of n and k.	4M	CO2
Q 3	Determine whether the groups $G=\left(\{0,1,2,3\},+_{4}\right)$ and $G^{\prime}=\left(\{1,2,3,4\}, \times_{5}\right)$ are isomorphic or not.	4M	CO5
Q 4	Let S be non-empty set and $P(S)$ be the collection of all subsets of S. Let the binary operation Δ called the symmetric difference of sets be defined as then prove that $(P(S), \Delta)$ is an abelian group . $A \Delta B=(A-B) \cup(B-A) \forall A, B \in P(S)$	4M	CO1
Q5	If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.	4M	CO3
	SECTION B Instructions: Each question will carry 10 marks Sup G in		
Q1	Suppose G is a group and N is a normal subgroup of G. Let $f: G \rightarrow G / N$ defined by $f(x)=N x \quad \forall x \in G$. Then prove that f is a homomorphism of G onto G / N and kernel of $f=N$.	10M	$\mathrm{CO3}$
Q2	Prove that the necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is that $a \in H, b \in H \Rightarrow a b^{-1} \in H$ where b^{-1} is the inverse of b in G.	10M	CO2
Q3	Show that the order of each subgroup of a finite group is a divisor of the order of the group.	10M	CO4
Q4	Prove that the set $G=\{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7 . OR Define Dihedral group. Find the group of symmetries of a square.	10M	CO1

	SECTION C Instructions: Each question will carry 20 marks		
Q1	i. Show that the multiplicative group $G=\{1,-1, i,-i\}$ is isomorphic to the permutation group $G^{\prime}=\{I,(a b c d),(a c)(b d),(a d c b)\}$ on four symbols a, b, c, d. ii. Let R_{+}be the multiplicative group of all positive real numbers and R be the additive group of all real numbers. Show that the mapping $g: R_{+} \rightarrow R$ defined by $g(x)=\log x \forall x \in R_{+}$is an isomorphism. OR Prove the following results i. If H be a normal subgroup of a group G and K is normal subgroup of G containing H, then $G / K \cong(G / H) /(K / H)$. ii. Let G be a group and let H be any subgroup of G . If N is any normal subgroup of G, then $(H N) / N \cong H /(H \cap N)$.	$(10+10) \mathrm{M}$	$\mathrm{CO5}$
$\begin{aligned} & \text { Q2a. } \\ & \text { Q2b. } \end{aligned}$	If H, K are two subgroup of a group G, then prove that $H K$ is a subgroup of G iff $H K=K H$ Suppose that N and M are two normal subgroup of G and $N \cap M=\{e\}$. Show that every element of N commutes with every element of M.	$\begin{aligned} & 10 \mathrm{M} \\ & 10 \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO3} \end{aligned}$

