Name:		UPES			
Enrolment No:		UNIVERSITY WITH A PURPOSE			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, DECEMBER 2021 Course: Theory of real functions Semester: III					
Program: B.Sc. (Hons.) Mathematics Time:					
Course Code: MATH 2010 Max. Ma			100		
Instructions: All questions are compulsory.					
SECTION A (Each question carries 4 marks)					
S. No.			Marks		
Q1	Consider the function $f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n}, \text{ where } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$				
	Then find $\lim_{x \to 0} f(x)$.		CO1		
Q2	Give one example in support of each of the fo	ollowing statements-			
	a. Let <i>A</i> be a nonempty subset of \mathbb{R} , such that exists a function $f: A \to \mathbb{R}$ which is continuous	× •	CO2		
	b. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and bounded.	A is a bounded subset of \mathbb{R} then $f(A)$ is			
Q3	Find the Taylor's polynomial of degree 6 for the function $\cos x$ about $x = \frac{\pi}{4}$.		CO4		
Q4	Find the value of <i>c</i> of Cauchy's mean value theorem for the functions $f(x) = x^3$, $g(x) = x^2$ in the interval [1,2].		CO4		
Q5	Consider the following function defined on the	ne interval [a, b]			
	$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q}, p \end{cases}$	E mervar $[a, b]$ $\mathbb{Z}, q \in \mathbb{N}, q > 0 \text{ and } gcd(p,q) = 1$ otherwise	CO3		
		otherwise	003		
	Find the points of local minima of $f(x)$.				
SECTION B (Each question carries 10 marks)					
Q6	Prove that Thomae's function is continuous a	t $\mathbb{R} \setminus \mathbb{Q}$ but discontinuous at \mathbb{Q} .	CO2		
Q7	Consider the set $S = [0,1] \setminus \left(\frac{1}{3}, \frac{2}{3}\right)$. Consider	der a function $f: \mathbb{R} \to \mathbb{R}$ such that			
	$f(x) = \inf\{ x\}$	$ x - y : y \in S$	CO3		
	Draw the graph of $f(x)$ and hence find the	e set of points where f is not differentiable.			

Q8	Using Lagrange's mean value theorem prove that $tan^{-1} x - tan^{-1} y < x - y$, where $x > y$.		
Q9	Show that $log_e(1 + e^x) = log_e 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \cdots$ and hence deduce that $\frac{e^x}{1 + e^x} = \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48} + \cdots$		
	2 4 48 OR		
	State and prove Taylor's theorem with Cauchy's form of remainder.		
SECTION-C (This question carries 20 marks)			
Q 10	Let $f(x)$ be defined on \mathbb{R} such that $ f(x) \le x \forall x \in \mathbb{R}$ and $f(x + y) = f(x) + f(y) \forall x, y \in \mathbb{R}$ then show that $f(x)$ is continuous on \mathbb{R} and $f(x) = cx$.	CO2	
Q 11	Consider a function $f: \mathbb{R} \to \mathbb{R}$ such that $ f(x) \le x^2$ for all $x \in \mathbb{R}$. Prove that $f(x)$ is differentiable at 0 by using Sandwich theorem.		
	OR		
	Prove that between any two roots of $e^x \sin x = 1$, there is at least one root of $e^x \cos x + 1 = 0$.		