Name: Enrolment No:		
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, DECEMBER 2021 $\right]$ Semester: III		
SECTION A (Each question carries 4 marks)		
S. No.		Marks
Q1	Consider the function $f(x)=\left\{\begin{array}{cc}1 & \text { if } x=\frac{1}{n}, \text { where } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{array}\right.$ Then find $\lim _{x \rightarrow 0} f(x)$.	CO1
Q2	Give one example in support of each of the following statements- a. Let A be a nonempty subset of \mathbb{R},such that the derived set A^{\prime} of A is empty. Then there exists a function $f: A \rightarrow \mathbb{R}$ which is continuous. b. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and A is a bounded subset of \mathbb{R} then $f(A)$ is bounded.	CO2
Q3	Find the Taylor's polynomial of degree 6 for the function $\cos x$ about $x=\frac{\pi}{4}$.	CO4
Q4	Find the value of c of Cauchy's mean value theorem for the functions $f(x)=x^{3}, g(x)=x^{2}$ in the interval [1,2].	CO4
Q5	Consider the following function defined on the interval [a, b] $f(x)=\left\{\begin{array}{cc} \frac{1}{q}, & \text { if } x=\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}, q>0 \text { and } \operatorname{gcd}(p, q)=1 \\ 0 & \text { otherwise } \end{array}\right.$ Find the points of local minima of $f(x)$.	$\mathrm{CO3}$
SECTION B (Each question carries 10 marks)		
Q6	Prove that Thomae's function is continuous at $\mathbb{R} \backslash \mathbb{Q}$ but discontinuous at \mathbb{Q}.	$\mathrm{CO2}$
Q7	Consider the set $S=[0,1] \backslash\left(\frac{1}{3}, \frac{2}{3}\right)$. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\inf \{\|x-y\|: y \in S\}$ Draw the graph of $f(x)$ and hence find the set of points where f is not differentiable.	CO3

Q8	Using Lagrange's mean value theorem prove that $\tan ^{-1} x-\tan ^{-1} y<x-y$, where $x>y$.	$\mathrm{CO3}$
Q9	Show that $\log _{e}\left(1+e^{x}\right)=\log _{e} 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\cdots$ and hence deduce that $\frac{e^{x}}{1+e^{x}}=$ $\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+\cdots$ OR State and prove Taylor's theorem with Cauchy's form of remainder.	CO4
SECTION-C (This question carries 20 marks)		
Q 10	Let $f(x)$ be defined on \mathbb{R} such that $\|f(x)\| \leq\|x\| \forall x \in \mathbb{R}$ and $f(x+y)=f(x)+$ $f(y) \forall x, y \in \mathbb{R}$ then show that $f(x)$ is continuous on \mathbb{R} and $f(x)=c x$.	CO2
Q 11	Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\|f(x)\| \leq x^{2}$ for all $x \in \mathbb{R}$. Prove that $f(x)$ is differentiable at 0 by using Sandwich theorem. OR Prove that between any two roots of $e^{x} \sin x=1$, there is at least one root of $e^{x} \cos x+$ $1=0$.	CO 3

