Name:

Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Sem Examination, DEC-2021

Programme Name: M.Sc. (Hons.) Petroleum Geoscience

Course Name: Drilling and Production Operations

Course Code: PEGS8006

Time: 03 hrs Max. Marks: 100

Semester: III

Instructions:

- > All questions are compulsory.
- ➤ However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.
- > Write the answers on an A4 sheet with your name and roll number mentioned on each page. Write clearly, scan and upload properly.

SECTION A (4x5=20 Marks) All Questions are compulsory

S. No.		Marks	CO
Q1	Define BOP and its types	04	CO1
Q2	Define Hydrostatic Pressure and Formation pressure	04	CO2
Q3	Distinguish between MWD & LWD	04	CO3
Q4	Discuss selection criteria for the PDC bits	04	CO2
Q5	Discuss types of mist extractors	04	CO3

SECTION B (40 Marks) All the questions are compulsory

Q 6	Explain in detail about the procedure of killing a well using following methods: a) Driller's Method b) Wait and Weight Method	10	CO1
Q 7	a) Summarize different considerations needed while planning a directional well.b) Explain Kick off point and horizontal drilling and ERD well.	10	CO2
Q 8	Discuss the functions of any two components used in BHA. Explain about SIDPP and SICP. OR Define well stimulation. Explain the Acidizing and hydraulic fracturing and also discuss about the perforation fluids.	10	CO3

Define Artificial methods and their classification. Discuss sucker rod pump method with their diagram and mechanism OR Explain Christmas tree components with neat clean diagram and Explain types of well completions with diagram and their advantages & disadvantages?	10	CO4
SECTION-C (40 Marks) All the questions are compulsory		
Explain in detail about different types of Casings along with neat diagram and their dimensions. Also discuss the functions of each casing.		
OR		
	20	CO3
I. Calculate the Drill collar Dimensions and weights:		
a. What is the weight in air of 200 ft of 9 1/2" x 2 13/16" drill collar?		
b. What is the weight of this drill collar when immersed in 12 ppg mud?		
c. It is not uncommon for 5" 19.5 lb/ft drill pipe to be used in the same string as 8 1/4" x 2 13/16" drill collars. Compare the nominal I.D. of this drill pipe and Drill collar size and note the differences in wall thickness of these tubulars.		
II. The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob.		
a) Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections.		
b) Calculate the weight of this string in 12 ppg mud. Also, Calculate the length of 9 1/2" x 2 13/16" drill collars that would be required to provide 25,000lbs Wob and keep the drill pipe in tension in 12 ppg mud.		
Calculate the minimum required size of a standard oil/gas separator for the following conditions. Consider both vertical and horizontal separators.		
 a) Assuming a 20-in. 71/2-ft vertical separator b) 16-in. 5-ft horizontal separator z = 0.8427 p_g = 3.38 lbm/ft³ 		
	method with their diagram and mechanism OR Explain Christmas tree components with neat clean diagram and Explain types of well completions with diagram and their advantages & disadvantages? SECTION-C (40 Marks) All the questions are compulsory Explain in detail about different types of Casings along with neat diagram and their dimensions. Also discuss the functions of each casing. OR I. Calculate the Drill collar Dimensions and weights: a. What is the weight in air of 200 ft of 9 1/2" x 2 13/16" drill collar? b. What is the weight of this drill collar when immersed in 12 ppg mud? c. It is not uncommon for 5" 19.5 lb/ft drill pipe to be used in the same string as 8 1/4" x 2 13/16" drill collars. Compare the nominal LD. of this drill pipe and Drill collar size and note the differences in wall thickness of these tubulars. II. The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob. a) Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections. b) Calculate the weight of this string in 12 ppg mud. Also, Calculate the length of 9 1/2" x 2 13/16" drill collars that would be required to provide 25,000lbs Wob and keep the drill pipe in tension in 12 ppg mud. Calculate the minimum required size of a standard oil/gas separator for the following conditions. Consider both vertical and horizontal separators. a) Assuming a 20-in. 71/2-ft vertical separator b) 16-in. 5-ft horizontal separator z = 0.8427	method with their diagram and mechanism OR Explain Christmas tree components with neat clean diagram and Explain types of well completions with diagram and their advantages & disadvantages? SECTION-C (40 Marks) All the questions are compulsory Explain in detail about different types of Casings along with neat diagram and their dimensions. Also discuss the functions of each casing. OR I. Calculate the Drill collar Dimensions and weights: a. What is the weight in air of 200 ft of 9 1/2" x 2 13/16" drill collar? b. What is the weight of this drill collar when immersed in 12 ppg mud? c. It is not uncommon for 5" 19.5 lb/ft drill pipe to be used in the same string as 8 1/4" x 2 13/16" drill collars. Compare the nominal LD. of this drill pipe and Drill collar size and note the differences in wall thickness of these tubulars. II. The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob. a) Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections. b) Calculate the weight of this string in 12 ppg mud. Also, Calculate the length of 9 1/2" x 2 13/16" drill collars that would be required to provide 25,000lbs Wob and keep the drill pipe in tension in 12 ppg mud. Calculate the minimum required size of a standard oil/gas separator for the following conditions. Consider both vertical and horizontal separators. a) Assuming a 20-in. 71/2-ft vertical separator b) 16-in. 5-ft horizontal separator z = 0.8427

	C d		5.0 MN	Ascfd		
	Gas flow rate	:		15014		
	Gas-specific	gravity:	0.7			
	Condensate f	low rate:	20 bbl/	MMscf		
	Condensate	gravity:	60 ⁰ Al	PI		
	Operating p	ressure:	800 ps	ia		
	Operating tem	perature:	80 ⁰ F	7	20	CO5
	Separator	type	K			
	Vertical sep	parators	0.06-0.35	5		
	Horizontal se	eparators	0.40-0.50)		
	Settling Volum Separators (230		=			
	Size (D x H)	Oil/Gas separators	Oil/Gas/Wat	ter separators		
	20-in. x 71/2-ft	0.65	1.	15		
	Settling Volumes of Stand (230–2,000 p		al High-Pressur essure) V _L (bbl)			
	Size (D x L)	1/2 Full	1/3 Full	1/4 Full		
	16-in.x 5-ft	0.61	0.35	0.24		
		OR	•	·		
Q 11	Explain the various types of details. Also discuss the 3 pl	-		ean diagram in		

All The Best!!

Tables

CAPACITY AND DISPLACEMENT OF DRILLPIPE

SIZE	NOMINAL	GRADE	APPROX	CAP	ACITY		N END	CLOSED END DISPLACEMENT		
AND CONN.	WEIGHT LB/FT	diabl	WEIGHT LB/FT	L/M	GALL/FT	L/M	GALL/FT	L/M	GALL/FT	
2 ³ / ₈ 2 ³ / ₈ IF NC26	6.65	E75 X95 G105	7.00 7.08 7.08	1.68	0.135	1.39 1.34 1.34	0.107 0.108 0.108	3.01 3.02 3.02	0.242 0.243 0.243	
2 ⁷ / ₈ 2 ⁷ / ₈ IF NC 31	10.4	E75 X95 G105 S135	10.82 10.89 10.89 11.20	2.36	0.190	2.05 2.06 2.06 2.12	0.165 0.166 0.166 0.171	4.41 4.42 4.42 4.48	0.355 0.356 0.356 0.361	
	9.5	E75	10.39	4.54	0.366	1.97	0.159	6.51	0.525	
3½ 3½ IF NC38	13.3	E75 X95 G105	13.86 14.32 14.38	3.88 3.96 3.87	0.312 0.319 0.312	2.63 2.71 2.73	0.212 0.218 0.220	6.51 6.67 6.60	0.524 0.537 0.532	
	15.5	E75 X95 G105	16.42 16.54 16.61	3.46	0.279	3.11 3.14 3.15	0.250 0.253 0.254	6.57 6.60 6.61	0.529 0.532 0.533	
5 4 ¹ / ₂	19.5	E75 X95 G105 S135	20.99 21.09 21.50 22.09	9.16	0.738	3.98 4.00 4.08 4.19	0.320 0.322 0.329 0.337	13.14 13.16 13.24 13.35	1.058 1.070 1.087 1.075	
IF NC50	25.6	E75 X95 G105	27.01 28.30 28.11	8.11 8.10 8.09	0.653 0.652 0.651	5.12 5.36 5.33	0.412 0.432 0.429	13.23 13.46 13.42	1.065 1.084 1.080	

DRILL COLLAR WEIGHTS (STEEL) POUNDS PER FOOT

Collar		BORE OF COLLAR										
O.D.	1-1/2	1-74	2	2-1/4	2-1/2	$2^{-13}V_{18}$	3	3-1/4	3-1/2	3-3/4	4	
3-3/6	24.4	22.2										
3-7,	26.7	24.5										
3-1/4	31.5	29.3		e et Merte								
3-7/6	34.0	31.9	29.4	26.5			1					
4	36.7	34.5	32.0	29.2								
4-1/6	39.4	37.2	34.7	31.9								
4-1/4	42.2	40.0	37.5	34.7						. 14		
4-1/2	48.0	45.8	43.3	40.5								
$4^{-3}/_{e^{-1}}$	54.2	52.0	49.5	46.7	43.5							
5	60.2	58.5	55.9	53.1	49.9							
5-1/4	67.5	65.3	62.8	59.9	56.8	53.3	l. Li					
5.1/2	74.7	72.5	69.9	67.2	63.9	60.5	56.7					
$5^{-3}/_{4}$	82.1	79.9	77.5	74.6	71.5	67.9	64.1		I:			
6	89.9	87.8	85.3	82.5	79.3	75.8	71.9	67.8	63.3			
6-1/4	98.1	95.9	93.5	90.6	87.5	83.9	80.1	75.9	71.5			
6-1/,	106.6	104.5	101.9	99.1	95.9	92.5	88.6	84.5	79.9			
$6^{-3}/_4$	115,5	113.3	110.8	107.9	104.8	101.3	97.5	93.3	88.8		I	
7	124.6	122.5	119.9	117.1	113.9	110.5	106.6	102.5	97.9	93.1	87.9	
7-1/4	134.1	131.9	129.5	126.6	123.5	119.9	116.1	111.9	107.5	102.6	97.5	
7-1/2	143.9	141.7	139.3	136.5	133.3	129.8	125.9	121.8	117.3	112.5	107.3	
$7^{-3}/_4$	154.1	151.9	149.5]	146.6	143.5	139.9	136.1	131.9	127.5	122.6	117.5	
8	164.6	162.5	149.9	157.1	153.9	150.5	146.6	142.5	137.9	133.1	127.9	
8.7/4	175.4	173.3	170.8	167.9	164.8	161.3	157.5	153.3	148.8	143.9	138.8	
8: 1/2	186.6	184.4	181.9	179.1	175.9	168.6	172.5	164.5	159.9	155.1	149.9	
$-8^{-3}/_{4}$	198.1	195.9	193.9	190.6	187.4	183.9	180.1	175.9	. 171.4	166.6	161.5	
9		207.8	205.3	202.4	199.3	195.8	191.9	187.8	183.3	178.5	173.3	
9-1/2		232.4	229.9	227.1	223.9	220.4	216.6	212.4	297.9	203.1	197.9	
10	<u> 3-22-23</u>		255.9	253.1	249.9	246.4	242.6	238.4	233.9	229.1	223.9	
10-1/2			283.3	280.4	277.3	273.8	269.9	265.8	261.3	256.4	251.3	
11					305.9	302.4	298.6	294.4	289.9	285.1	279.9	

MUD DENSITY, GRADIENT AND BUOYANCY FACTOR

NOTE: Buoyancy factor is for STEEL only

Mud density			Gradient	Buoyancy	Mud density				Buoyancy
kg/m³	lb/gall	Ib/ft ³	psi/ft	Factor	kg/m ³	lb/gall	lb/ft ³	psi/ft	Factor
1000	8.34	62.4	433	.873	1800	15.0	112	.779	.771
1010	8.40	62.8	436	.872	1820	15.2	114	.790	.768
1030	8.50	64.3	447	.869	1850	15.4	115	.800	765
1060	8.80	65.8	457	.866	1870	15.6	117	.810	762
1080	9.00	67.3	.468	.862	1890	15.8	118	.821	.759
1100	9.20	68.8	.478	.860	1920	16.0	120	.831	.755
1130	9.40	70.3	488	.856	1940	16.2	121	.842	753
1150	9.60	71.8	499	.853	1970	16.4	123	.852	749
1154	9,625	72.0	.500	853	1990	16.6	124	.862	746
1180	9.80	73.3	.509	.850	2010	16.8	126	.873	.743
1200	10.0	74.8	.519	.847	2040	17.0	127	.883	.740
1220	10.2	76.3	.530	.844	2060	17.2	129	.894	.737
1250	10.4	77.8	.540	.841	2090	17.4	130	.904	.734
1270	10.6	79.3	.551	.838	2110	17.6	132	.914	.731
1290	10.8	80,8	.561	.835	2130	17.8	133	.925	.728
1320	11.0	82.3	.571	.832	2160	18.0	135	.935	.725
1340	11.2	83.8	.582	829	2180	18.2	136	.945	.722
1370	11.4	85.3	.592	.826	2210	18.4	138	.956	.719
1390	11.6	86.8	.603	823	2230	18.6	139	.966	716
1410	11.8	88.3	.613	.820	2250	18.8	141	.977	.713
1440	12.0	89.8	.623	.817	2280	19.0	142	.987	.710
1460	12.2	91.3	.634	.814	2300	19.2	144	.997	707
1490	12.4	92.8	.644	.810	2330	19.4	145	1.01	704
1510	12.6	94.3	.655	.808	2350	19.6	147	1.02	.701
1530	12.8	95.8	.665	.804	2370	19.8	148	1.03	.698
1560	13.0	97.3	.675	.801	2400	20.0	150	1.04	.6394
1580	13.2	98.7	.686	.798	2420	20.2	151	1.06	/692
1610	13.4	100	.696	.795	2450	20.4	153	1.06	.688
1630	13.6	102	.706	.792	2470	20.6	154	1.07	.685
1650	13.8	103	.717	.789	2490	20.8	156	1.08	.682
1680	14.0	105	.727	.786	2520	21,0	157	1.09	,679
1700	14.2	106	.738	.783	2540	21.2	159	1.10	.676
1730	14.4	108	.748	.780	2570	21.4	160	1.11	.673
1750	14.6	109	.758	.777	2590	21.6	162	1.12	.670
1770	14.8	111	.769	.774	2610	21.8	163	1.13	667