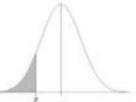


UNIVERSITY WITH A PURPOSI

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: TQM & TPM Semester: III
Program: M-TECH (HSE/HSE-DM) III Duration: 03 hrs.
Course Code: HSFS8001 Max. Marks: 100


		SECTION A (Scan and upload)	(50)	x 4M = 20	Marke		
		(Scan and apload)	(0.0	Marks	COs		
Q-1	What is KAIZEN? Explain MURA, N	MUDA and MURI with examp	le?	4	CO1		
Q-2	Write are the six big losses associa			4	CO		
Q-3	Write the formula of PPI and explai	in each term in it?		4	COS		
Q-4	What is double sampling plan?		4	CO2			
Q-5	What is ROBUST Designing? Expl	ain with example?		4	CO		
		SECTION B			•		
		(Scan and upload)	(4Qx	10M = 40	Marks)		
Q-1	a) Explain the role of TQM to increab) Write the name of eight pillars of		anization?	10 (5+5)	CO1		
Q-2	a)What is QFD? At what stage it		standard QFD	` ′	CO2		
	matrix and describe each block of i			(4+3+3)			
	b) Draw a model FMEA table and	explain each Block in it? How	w you calculate				
	RPN?						
	(2+3)						
Q-3	a) Draw standard OC curve and di	ideal OC curve	10	CO3			
	explain alpha and beta risk?(2+3)						
	b) What is reliability? How it is i	L					
Q-4	Parallel- series network and series Using the data given below, calcu		in the value of	10	CO4		
ζ ¬	OEE if unplanned down time is red	10	004				
	(Assume all the extra parts produ	ced in this reduced time is of	good quality)				
	Item	Data					
	Shift Length	8 hours = 480 min.					
	Short Breaks	2 @ 15 min. = 30 min.					
	Short Breaks Meal Break	2 @ 15 min. = 30 min. 1 @ 30 min. = 30 min.					
	Meal Break	1 @ 30 min. = 30 min.					
	Meal Break Down Time	1 @ 30 min. = 30 min. 47 minutes					
	Meal Break Down Time Ideal Run Rate	1 @ 30 min. = 30 min. 47 minutes 60 pieces per minute					
	Meal Break Down Time Ideal Run Rate Total Pieces	1 @ 30 min. = 30 min. 47 minutes 60 pieces per minute 19,271 pieces					
	Meal Break Down Time Ideal Run Rate Total Pieces Reject Pieces	1 @ 30 min. = 30 min. 47 minutes 60 pieces per minute 19,271 pieces	(2Qx	20M= 40 I	Marks)		
	Meal Break Down Time Ideal Run Rate Total Pieces Reject Pieces	1 @ 30 min. = 30 min. 47 minutes 60 pieces per minute 19,271 pieces 423 pieces	(2Qx	20M= 40 I	Marks)		

incorrect address, or incorrect name. The team decided to pull a random sample of 100 invoices per day. The data from the last 20 days are given in

	the Table 1 given below. Calculate UCL, LCL and central line of p control chart		
	and plot the graph in graph sheet.		
	b) Write all the clauses and sub clauses of ISO 9001:2015. Explain which		
	clause is dedicated to" Risk and Opportunity". Explain in detail?		
Q-2	a) The Theater chain has studied its customers to determine how much money	20	CO3
	they spend on concessions. The study revealed that the spending distribution	(10+10)	
	is approximately normally distributed with a mean of \$4.11 and a standard		
	deviation of \$1.37.		
	I. What percentage of customers will spend less than \$3.00 on		
	concessions?		
	II. What spending amount corresponds to the top 87th percentile?		
	b) Find the means of X and Y variables and the coefficient of correlation		
	between them from the following two regression equations:		
	2Y-X-50=0		
	3Y-2X-10=0.		

1 100 22 0.22
2 100 33 0.33
3 100 24 0.24
4 100 20 0.20
5 100 18 0.18
6 100 24 0.24
7 100 24 0.24
8 100 29 0.29
9 100 18 0.18
10 100 27 0.27
11 100 31 0.31
12 100 26 0.26
13 100 31 0.31
14 100 24 0.24
15 100 22 0.22
16 100 22 0.22
17 100 29 0.29
18 100 31 0.31
19 100 21 0.21
20 100 26 0.26

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0008	0.0005	0.0005	0.0005
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0088	0.0064
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0894	0.0681
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
8.0	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2208	0.2177	0.2148
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.5	0.3085	0.3050	0.3015	0.2981	0.2948	0.2912	0.2877	0.2843	0.2810	0.2776
0.4	0.3448	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

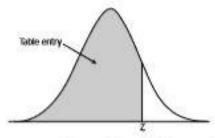


Table entry for z is the area under the standard normal curve to the left of z.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	,9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	,9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998