

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Biomass Conversion Technologies Program: M. Tech REE Course Code:EPEC7021 Semester: III Time: 03 hrs. Max.Marks:100

				FION A nd Upload)		(5 0 ×4	M – 20)Marks)
			(Scan a				arks	COs
Q 1	Explain the physical and chemical characterization of solid waste?						M	CO1
Q 2	List the design parameters for a fluidized bed gasifier.					4	M	CO2
Q 3	Draw a neat diagram of a semi batch pyrolysis reactor.					2	M	CO2
Q 4	What is carbonization process?				2	M	CO3	
Q 5	List the pro	operties of biod	iesel?			4	M	CO3
				FION B nd Upload)		(40, 10		0Marks)
Q 1	and gas ar determined of gas is as	Pine needle is used to produce bio oil in a slow pyrolysis unit. The % of bio oil , char nd gas are 30%, 40% and 30%. The average molecular formula of the bio char is letermined as $CH_{0.56}O_{0.28}N_{0.013}$ and for the bio oil is $CH_{1.47}O_{0.36}N_{0.005}$. The composition of gas is as follows: H ₂ 10%, CO ₂ 45%, CO 30% and CH ₄ 15%. Calculate the percentage of carbon converted to bio oil.						CO2
Q 2	I/P C H O N H2O A	wt % 80 5 2 2 6 Air with 80% moist. Saturated with waterv Partial Pressure of water	Gasifier Gasifier Ash 10% of weight of bio apor at 26°Cand 740 mm Hg ervapor at saturation =26 mm Hg er gas per kg of biom	O/P CO2 CO2 CH4 H2 N2 H2O mass that is fed to gasifier	wt % 5 20 3 15 54 3	1	0M	CO4

Q 3	a) Classify the pyrolysis based on heating rate.		
	b) Illustrate the different modes of heat transfer involved in pyrolysis.	1014	001
		10M	CO3
Q 4	Bio oil extracted from an oil seed sample has 90% triglycerides containing three long		
	chains which can produce methyl esters of lauric acid (CH ₃ (CH ₂)10COOH), myristic	1014	CO 4
	acid (CH ₃ (CH ₂)12COOH) and palmitic acid (CH ₃ (CH ₂)14COOH) in equal molar ratio	10M	CO4
	during transesterification using methanol and NaOH catalyst. Calculate the amount of		
	biodiesel produced by the transesterification of 20 kg of bio oil. Assume efficiency of		
	the conversion is 75%, and 12% of palmitic acid is converted to soap. How much		
	glycerol will be produced and how much soap will be produced? How can we improve		
	the efficiency of the transesterification?		
	SECTION C		
		$2\mathbf{x}\mathbf{20M} = 4$	0Marks)
Q 1	a) What are the different types of briquetting, briquetting processes and its		
	characteristics and applications?	(8+6+6) 20M	CO3
	b) Explain the mechanism and microorganisms for anaerobic digestion.		
	c) Illustrate the operation of a two stage anaerobic digester and its process.		
Q 2	Determine the volume of the digester chamber and dimension of the chamber for the		
	biogas production from the cow dung of 15 cows having body weight of 200 kg each.	20M	CO4
	Assume the temperature is 30°C, the solid content of the cow dung is 15%, and HRT is		
	40 days. One cow produces 10 kg cow dung daily.		
	(Or)		
	In a high rate bio gas plant food waste is anaerobically digested to produce biogas. The		
	slurry contains 8% of solid food grains. The elemental composition of the food grains		
	on dry basis is C:60%, H:5%, O:25%, N:10% (mass basis). Around 80% of the food	20M	CO4
	grains are converted into biogas and all the converted hydrogen forms methane. If the		