\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Name: \\
Enrolment No:
\end{tabular} \& \& \& \\
\hline Progr Cours Cours Nos. Instruc \& \begin{tabular}{llll}
\& \multicolumn{4}{c}{ UNIVERSITY OF PETROLEUM AND ENERGY STUDIES } \\
\& End Semester Examination, December 2021
\end{tabular} \& \[
\begin{gathered}
\text { : III } \\
: 3 \mathrm{hrs} \\
\mathrm{~s}: 100
\end{gathered}
\] \& \\
\hline \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { SECTION A } \\
(6 X 10=60 \text { marks) }
\end{gathered}
\]} \\
\hline S. No. \& \& Marks \& CO \\
\hline 1 \& \begin{tabular}{l}
(a) A mixture of gas has the following composition by mass \(\mathrm{O}_{2}-\mathbf{1 6 \%}, \mathrm{CO}-\mathbf{4 \%}\), \(\mathrm{CO}_{2}-\mathbf{8 \%}\) and rest \(\mathrm{N}_{2}\), tabulate the molar composition and average molecular weight? \\
(b) Power required in an agitator is a function of rotational speed (n), impeller diameter (d), fluid properties like density (\(\mathbf{\rho}\)), viscosity \((\boldsymbol{\mu})\), and acceleration due to gravity (g). Obtain a relation between the dimensionless groups using dimensional analysis.
\end{tabular} \& 5
5 \& CO1 \\
\hline 2 \& \begin{tabular}{l}
(a) Aluminum sulfate can be made by reacting crushed bauxite ore with sulfuric acid, according to the following equation
\[
\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}---\rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}
\] \\
The bauxite ore contains \(\mathbf{5 5 . 4 \%}\) by weight aluminum oxide, the reminder being impurities. The sulfuric acid solution contains \(\mathbf{7 7 . 7 \%} \mathbf{H}_{2} \mathbf{S O}_{4}\), the rest being water. To produce crude aluminum sulfate containing \(\mathbf{1 7 9 8} \mathbf{~ l b}\) of pure aluminum sulfate, 1080 \\
\(\mathbf{l b}\) of bauxite ore and \(\mathbf{2 5 1 0} \mathbf{~ l b}\) of sulfuric acid solution are used. \\
i. Identify the excess reactant \\
ii. What percent of excess reactant was consumed \\
iii. What was the degree of completion of the reactant? \\
(b) Brief about Raoult's law and its applications
\end{tabular} \& 7

3 \& CO2 \\

\hline 3 \& | The vapor pressure of Benzene is measured at two temperatures, with the following results, $\begin{array}{ll} \mathrm{T}_{1}=7.6^{\circ} \mathrm{C} & p_{1}{ }^{*}=40 \mathrm{~mm} \mathrm{Hg} \\ \mathrm{~T}_{2}=15.4^{\circ} \mathrm{C} & p_{2}^{*}=60 \mathrm{~mm} \mathrm{Hg} \end{array}$ |
| :--- |
| Determine the latent heat of vaporization and the parameter B in Classius-Clapeyron equation and then estimate p^{*} at $\mathbf{4 2 . 2}$ in ${ }^{\circ} \mathrm{C}$ using this equation. | \& 10 \& CO 3 \\

\hline
\end{tabular}

	$\begin{aligned} & \qquad \ln p^{*}=-\frac{\Delta H v}{R T}+B \\ & p^{*}=\text { saturation vapor pressure } \Delta H_{v}=\text { latent heat of vaporization } \\ & \mathrm{B}=\text { constant } \quad \mathrm{T}=\text { absolute Temperature } \end{aligned}$		
4	Moist air contains $\mathbf{0 . 0 1 0 9} \mathbf{~ k g}$ water vapor per cubic feet of the mixture at $\mathbf{3 0 0} \mathbf{K}$ and 101.325 kPa . Calculate the following, a) Partial pressure of water vapour b) The relative saturation c) Absolute humidity of the air d) The percentage saturation The vapor pressure of water is approximated by the following Antoine equation $\ln p^{*}=16.26205-\frac{3799.887}{T-46.854} \text { where } T \text { in } K \text { and } p * \text { in } k P a .$	10	CO4
5	A tank holds 10000 kg of saturated solution of NaHCO_{3} at $\mathbf{6 0}^{\mathbf{\circ}} \mathbf{C}$. You want to crystallize 400 kg of NaHCO_{3}. To what temperature the solution must be cooled? The solubility data for NaHCO_{3} as a function of temperature is given in the following table:	10	CO5
6	A natural gas stream has the following composition on mole basis: $\mathrm{CH}_{4}-\mathbf{8 4 \%}, \mathrm{C}_{2} \mathrm{H}_{6}-13 \%$ and $\mathrm{N}_{2}-3 \%$. Calculate the heat to be added to heat $\mathbf{1 0} \mathbf{~ k m o l}$ of natural gas from 298 K to 523 K using the heat capacity data given below.$\mathbf{C}_{p}=\mathbf{a}+\mathbf{b T}+\mathbf{c T}^{2}+\mathbf{d T}^{3}, \mathbf{k J} /(\mathrm{kmol}-\mathrm{K}) .$Gas \mathbf{a} $\mathbf{b ~ x ~ 1 0}^{\mathbf{3}}$ $\mathbf{c ~ x ~ 1 0}^{\mathbf{6}}$ $\mathbf{d \times 1 0}{ }^{\mathbf{9}}$ CH_{4} $\mathbf{1 9 . 2 4 9 4}$ $\mathbf{5 2 . 1 1 3 5}$ $\mathbf{1 1 . 9 7 3}$ $\mathbf{- 1 1 . 3 1 7 3}$ $\mathrm{C}_{2} \mathrm{H}_{6}$ $\mathbf{5 . 4 1 2 9}$ $\mathbf{1 7 8 . 0 8 7 2}$ $\mathbf{- 6 7 . 3 7 4 9}$ $\mathbf{8 . 7 1 4 7}$ $\mathrm{~N}_{2}$ $\mathbf{2 9 . 5 9 0 9}$ $\mathbf{- 5 . 1 4 1}$ $\mathbf{1 3 . 1 8 2 9}$ $\mathbf{- 4 . 9 6 8}$	10	CO6
	SECTION B $(2 \times 20=40$ marks $)$		
7	(a) $4500 \mathrm{~kg} / \mathrm{h}$ of a solution that is one-third $\mathrm{K}_{2} \mathrm{CrO}_{4}$ by mass is joined by a recycle stream containing $\mathbf{3 6 . 4 \%} \mathbf{K}_{2} \mathrm{CrO}_{4}$, and the combined stream is fed into an evaporator. The concentrated stream leaving the evaporator contains $\mathbf{4 9 . 4 \%}$ $\mathrm{K}_{2} \mathrm{CrO}_{4}$; this stream is fed into a crystallizer in which it is cooled (causing crystals of $\mathbf{K}_{2} \mathrm{CrO}_{4}$ to come out of solution) and then filtered. The filter cake consists of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ crystals and a solution of $\mathbf{3 6 . 4 \%} \mathrm{K}_{2} \mathrm{CrO}_{4}$ by mass. The crystals account	18	CO5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
for \(\mathbf{9 5 \%}\) of the total mass of the filter cake. The solution that passes through the filter, also \(\mathbf{3 6 . 4 \%} \mathbf{K}_{2} \mathrm{CrO}_{4}\) is the recycle stream. \\
Calculate the rate of evaporation, the rate of production of crystalline \(\mathbf{K}_{2} \mathbf{C r O} \mathbf{O}_{4}\), the feed rates that the evaporator and the crystallizer must be designed to handle and the recycle ratio \\
(b) Define crystallization \\
OR \\
Metallurgical grade silicon is purified to electronic grade for use in semiconductor industry by chemically separating it from its impurities. The Si metal reacts with varying degrees with hydrogen chloride gas at \(\mathbf{3 0 0}^{\circ} \mathbf{C}\) to form several polychlorinated silanes. Trichorosilane is liquid at room temperature and is easily separated by fractional distillation from the other gases. If \(\mathbf{1 0 0} \mathbf{~ k g}\) of silicon reacted as shown in figure, how much Trichorosiane is produced?
\end{tabular} \& 2

20 \& $\mathrm{CO5}$ \\

\hline 8 \& | The conversion of solid waste to innocuous gases can be accomplished in incinerators in an environmentally acceptable fashion, However the hot exhaust gases must be cooled or diluted with air. An economic feasibility study indicates that solid municipal waste can be burnt to a gas of the following composition (on a dry basis). $\mathbf{9 . 2 \%} \mathbf{C O}_{2}$, $\mathbf{1 . 5 \%} \mathrm{CO}, \mathbf{7 . 3} \% \mathrm{O}_{2}$ and the rest is \mathbf{N}_{2}. |
| :--- |
| What is the enthalpy difference for this gas per lb mol between the bottom and top of the stack if the temperature at the bottom of the stack is $\mathbf{5 5 0}{ }^{\circ} \mathbf{F}$ and the temperature at the top of the stack is $\mathbf{2 0 0}{ }^{\circ} \mathbf{F}$. Ignore the water vapor in the gas. Because these are ideal gases, you can neglect any energy effects resulting from the mixing of the gaseous components. | \& 20 \& CO6 \\

\hline
\end{tabular}

The heat capacity equation is $C_{p}=A+B T-C T^{2}+D T^{3}$ where C_{p} is in Btu/lbmol ${ }^{0} \mathrm{~F}$ and T in ${ }^{0} \mathrm{~F}$. The values of constants are as given in the table.

Component	A	B	C	D
N_{2}	6.895	0.7624×10^{-3}	0.7009×10^{-7}	-
O_{2}	7.104	0.7851×10^{-3}	0.5528×10^{-7}	-
CO_{2}	8.448	5.757×10^{-3}	21.59×10^{-7}	3.059×10^{-10}
CO	6.865	0.8024×10^{-3}	0.7367×10^{-7}	-

OR

(a) The standard heats of formation at $\mathbf{2 9 8} \mathbf{K}$ are $\mathbf{- 1 1 0 . 6} \mathbf{~ k J} / \mathbf{m o l}$ for $\mathbf{C O}, \mathbf{- 2 3 8 . 6 4}$
$\mathbf{k J} / \mathbf{m o l}$ for $\mathbf{C H}_{3} \mathbf{O H}$. The latent heat of vaporization of methanol at $\mathbf{2 9 8} \mathbf{K}$ is $\mathbf{3 7 . 9 8}$
$\mathbf{k J} / \mathbf{m o l}$. The specific heats are ($\mathbf{J} / \mathbf{m o l} . \mathbf{K}$) are given by:
$\mathrm{C}_{p}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=18.382+101.564 \times 10^{-3} \mathrm{~T}-28.683 \times 10^{-6} \mathrm{~T}^{2}$
$\mathrm{C}_{p}(\mathrm{CO})=28.068+4.631 \times 10^{-3} \mathrm{~T}-2.5773 \times 10^{-4} \mathrm{~T}^{2}$
$\mathrm{C}_{p}\left(\mathrm{H}_{2}\right)=27.012+3.509 \times 10^{-3} \mathrm{~T}-6.9006 \times 10^{-4} \mathrm{~T}^{2}$
calculate the standard heat of reaction at $\mathbf{1 0 7 3} \mathbf{K}$
(b) Define Standard Heat of Reaction

