


| Cours | wiax. Warks: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--|--|--|--|
|       | SECTION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x 4M = 20      | 0 Marks) |  |  |  |  |
| Q 1   | a. The two main mechanisms through which rocks melt are and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4            | 001      |  |  |  |  |
|       | b. With respect to silica percentage, two extreme types of magmas are &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04             | CO1      |  |  |  |  |
| Q 2   | Mark True/ False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |  |  |  |  |
|       | a. Rhyolitic magmas are the most viscous one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |  |  |  |  |
|       | b. Rocks consisting of more than 90% mafic minerals are termed as Melanocratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04             | CO1      |  |  |  |  |
|       | c. Gabbro is devoid of quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |  |  |  |  |
|       | d. Plagioclase replaced by nepheline in nepheline-syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |  |  |  |  |
| Q 3   | a. Sills linked by relatively short dike-like segments known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |  |  |  |  |
|       | b. Volcanic glass is otherwise known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04             | CO1      |  |  |  |  |
|       | c. Anhedral grains give rise totexture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <del>1</del> | COI      |  |  |  |  |
|       | d. Transformation of glass to crystalline matter is known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |  |  |  |  |
| Q 4   | a. In Poikilitic texture, smaller grains(chadacryst) are accommodated in large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |  |  |  |  |
|       | grains(oikocryst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04             | CO2      |  |  |  |  |
|       | b. CIPW Classification based upon two types of minerals, namely &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V4             | COZ      |  |  |  |  |
|       | The second secon |                |          |  |  |  |  |
| Q 5   | a. Mutually touching phenocrysts in interstitial matrix give rise to texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |  |  |  |  |
|       | b. Sandpaper is an example of abrasive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4            | COA      |  |  |  |  |
|       | c. In CIPW, the input mineral composition must be in form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04             | CO2      |  |  |  |  |
|       | d. Plutons of area < 100 sq. km is known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |  |  |  |  |
|       | SCETION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x10M = 4       | 0 Marks) |  |  |  |  |
| Q 6   | Differentiate between vesicular and amygdaloidal texture and defend their occurrence in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10             | CO3      |  |  |  |  |
|       | volcanic rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10             | COS      |  |  |  |  |
| Q 7   | Explain the formation mechanism of porphyritic texture highlighting the role of physio-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10             | CO2      |  |  |  |  |
|       | chemical condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10             | CO2      |  |  |  |  |
| Q 8   | Defend the statement "Reaction texture termed as Reaction structure".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10             | CO3      |  |  |  |  |
| Q 9   | Compare Tamman & Ostwald theories and suggest the most appropriate one governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |  |  |  |  |
|       | crystallization of uni-component magma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | CO4      |  |  |  |  |
|       | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |  |  |  |  |

|      | Examine & validate the statement "Uni-component system should have a maximum of two degree of freedoms".                                                                                                                                                                                                   |               |          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
|      | SECTION C (Scan and upload) (2Q:                                                                                                                                                                                                                                                                           | x20M = 40     | ) Marks) |
| Q 10 | Label the Binary phase diagram where A & B are the two components of a binary system. With suitable assumptions, examine congruency/incongruence of it.  Using QAPF Diagram, give suitable nomenclature to the below mentioned composition Rock is a silica under saturated one. Composition is as follows | 5+15<br>10=20 | CO3      |
|      | Quartz: 25% Anorthite: 20% Orthoclase: 20%  OR Using CIPW Norm, find out the Salic and Femic minerals, their abundance and the rock class.                                                                                                                                                                 |               |          |
|      | The spread-sheet is attached below.                                                                                                                                                                                                                                                                        |               |          |

| Constituents Of Rock  |                                                          | SiO <sub>2</sub> |       | $Fe_2O_3$ | FeΩ  | MgQ  | ÇaΩ  | Na <sub>2</sub> O | K <sub>2</sub> O | H <sub>2</sub> O | CO <sub>2</sub> | TiO <sub>2</sub> | $P_2O_5$ | $SO_2$ | S  | MnQ  |             |               |                          |     |       |
|-----------------------|----------------------------------------------------------|------------------|-------|-----------|------|------|------|-------------------|------------------|------------------|-----------------|------------------|----------|--------|----|------|-------------|---------------|--------------------------|-----|-------|
| Percentages(analysis) |                                                          | 49.68            | 36.13 | 2.49      | 8.88 | 1.13 | 0.79 | 0.25              | 0.32             |                  |                 |                  |          |        |    | 0.05 | Molecular   |               |                          | Gro | up of |
| Molecular Weights     |                                                          | 60               | 102   | 160       | 72   | 40   | 56   | 62                | 94               | 18               | 44              | 80               | 32       | 355    | 19 | 71   | Proportions | Molecular     | olecular Percentage star |     | dard  |
| Molecular Proportion  |                                                          |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      | Troporacias |               | Percentage<br>NORM       |     | eral  |
| Quartz                | S <sub>1</sub> O <sub>2</sub>                            |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | Weights<br>60 |                          | Q   |       |
| Orthoclase            | K2O, Al2O3, 6SiO2                                        |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 556           |                          |     |       |
| Albite                | Na2O, Al2O3, 6 SiO2                                      |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 524           |                          |     |       |
| Anorthite.            | CaO, Al <sub>2</sub> O <sub>1</sub> , 2 SiO2             |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 278           |                          | F   |       |
| Leucite               | K2O, Al <sub>2</sub> O <sub>3</sub> , 4 SiO2             |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 436           |                          |     |       |
| Nepheline             | Na2O, Al <sub>2</sub> O <sub>3</sub> , 2 SiO2            |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 284           |                          | L   | Salic |
| Corundum              | Al <sub>2</sub> O <sub>3</sub>                           |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 102           |                          | С   | Group |
|                       |                                                          |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | Н  |      |             |               |                          |     |       |
| Acmite                | Na <sub>2</sub> O, Fe <sub>2</sub> O3, 4SiO <sub>2</sub> |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 462           |                          |     |       |
|                       | CaO, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 116           |                          |     |       |
|                       | MgQ, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 100           |                          |     |       |
| Diopside              | FeQ, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 132           |                          |     |       |
| Wollastonite          | CaO, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 116           |                          |     |       |
|                       | MgO, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 100           |                          |     |       |
| Hypersthene           | FeO, SiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 132           |                          | P   |       |
|                       | 2MgO, SiO2                                               |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 140           |                          |     |       |
| Olivine               | 2FeO, SiO2                                               |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        |    |      |             | 204           |                          | 0   |       |
| Magnetite             | FeO, Fe <sub>2</sub> O <sub>3</sub>                      |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 232           |                          |     | 1     |
| Haematite             | Fe <sub>2</sub> O <sub>3</sub>                           |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 160           |                          |     |       |
| Ilmanite              | FeO, TiO2                                                |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 152           |                          | M   |       |
| Pyrite                | FeS <sub>2</sub>                                         |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 120           |                          |     | 1     |
| Apatite               | 3Cao, P2O3, 1/3CaF2                                      |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 336           |                          |     | Femic |
| Calcite               | CaO.CO <sub>2</sub>                                      |                  |       |           |      |      |      |                   |                  |                  |                 |                  |          |        | П  |      |             | 100           |                          | Α   | Group |