Enrolment No: Name:	ment No: 1 UPES	
Course: Thermal Physics Program: B.Sc (Honors) Physics Course Code: PHYS 2002 No of Pages: 2		
Each Question will carry 4 Marks. SECTION A		
S. No.	Questions	CO
Q. 1	How much heat is needed to raise the temperature of 3.0 kg of a material by $18^{0} \mathrm{C}$ if its specific heat is $530 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$?	CO 3
Q. 2	Derive the first TdS equation in the following form $T d S=C_{V} d T+\left.T \frac{\partial P}{\partial T}\right\|_{V} d V$	CO2
Q. 3	Explain: why the entropy of the universe is increasing?	CO2
Q. 4	Nitrogen molecules obey Maxwellian distribution law and their mean energy is $15.6 \times 10^{-21} \mathrm{~J}$. Calculate their mean speed. Take the degree of freedom associated with nitrogen molecule as 5 .	CO1
Q. 5	What is the thermodynamic condition of any natural change? Mention the conditions for thermodynamic equilibrium of a system under different conditions.	CO3
	question will carry 10 marks SECTION B	
Q. 6	A Van der Waal's gas has the equation of state $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$ (a) Discuss the physical origin of the parameters, a and b. Why is the correction to pressure inversely proportional to V^{2} ? (b) The gas undergoes an isothermal expansion from volume, V_{1} to volume, V_{2}. Calculate the change in the Helmholtz free energy. (c) From the information given, can you calculate the change in internal energy? Discuss your answer.	CO2
Q. 7	Calculate the coefficient of viscosity of hydrogen gas at $27^{\circ} \mathrm{C}$ and one atmosphere pressure. Take molecular weight of hydrogen as 2.016 u and diameter of hydrogen molecule as $2.92 \times 10^{-10} \mathrm{~m}$. $1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$. Assume that hydrogen obeys Maxwellian velocity distribution.	CO1
Q. 8	By using the Jacobian form, deduce the all four Maxwell's relations of thermodynamics. Give the interpretation of each relation.	CO2
Q. 9	State the zeroth order approximation and derive the relation to determine the mean free path in terms of number of molecules per unit volume and microscopic collision cross section.	CO1
1. Each question will carry 20 marks		
Q. 10	You plan to have iced tea for small get together. You have an insulated container with 3 kg of tea (essentially water) at 293 K to which you add ice at 263 K .	CO4

	(a) How much ice at 263 K do you need to add to the 293 K tea in order to have a resulting mixture of tea (water) and 0.2 kg of ice in equilibrium? What is the equilibrium temperature? (b) Suppose the container of the iced tea is left in the state of equilibrium described in part (a) and the temperature outside the container is fixed at 293 K . Suppose further that the container has a total surface area of $2500 \mathrm{~cm}^{2}$, a thickness of 1 cm and is made of material with thermal conductivity $0.025 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}$. While there is still ice left, find the rate at which heat energy is entering the container and how long it takes the ice to melt. (c) What was the entropy change in part (b) and in part (a) OR (a) Two Carnot engines A and B are operated in series. Engine A receives heat at 900 K and rejects to a reservoir at temperature T K. The second engine B receives heat rejected by the first engine and in turn rejects to a heat reservoir at 400 K . Calculate the temperature T when (a) the work outputs of both the engines are equal and (b) the efficiencies of the two engines are equal. (b) A reversible heat engine converts one sixth of the heat input into work. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency is doubled. Calculate the temperatures of the source as well as the sink.	
Q. 11	Consider the following three step process cycle: Heat is allowed to flow out of an ideal monoatomic gas at constant volume so that its pressure drops from 2.2 atm . to 1.5 atm . Then the gas expands at constant pressure, from a volume of 6.8 L to 10.0 L , where the temperature reaches its original volume. The gas then moves along the isotherm back to its starting point. (a) Draw a PV diagram showing three step process cycle. (b) Calculate the total work done by the gas in the cyclic process. (c) Calculate the change in the internal energy of the gas in the first two steps of the cycle, (d) What is heat flow into or out of the gas on each of the three steps?	$\mathrm{CO3}$

