

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Mathematical Physics II Program: B.Sc. Physics (H) Course Code: PHYS 2001 Semester: III Duration: 03 hrs. Max. Marks: 100

Instructions:

- There are three Sections (Section A, Section B and Section C).
- Section A: All the questions are compulsory.
- Section B: one question has internal choice.
- Section C: one question has internal choice.

SECTION A (5Q >		$Q \times 4M = 2$	$\times 4M = 20 Marks$	
S. No.		Marks	COs	
Q1.	Define Isomorphism and Homomorphism with examples.	4	CO1	
Q2.	Determine regular singular points of the differential equation $2x^2y'' + 3xy' + (x^2 - 4) y = 0.$	4	CO2	
Q3.	Authenticate the recurrence relations of Bessel function $4J_n''(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x).$	4	CO2	
Q4.	Validate $\Gamma(n + 1) = n\Gamma(n)$, where Γ is a gamma function.	4	CO3	
Q5.	Assess the Auxiliary equations of one-dimensional wave equation.	4	CO4	
	SECTION B (4Q	$\times 10M = 4$	40 Marks)	
Q6.	Estimate the values of [22, 1] and [13, 3], using Christoffel symbols if $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta (d\varphi)^2$	10	C01	
Q7.	Validate for the function $f(x)$, for which the nth derivative is continuous and $P_n(x)$ is the Legendre polynomial of degree n . $\int_{-1}^{1} f(x) P_n(x) dx = \frac{(-1)^n}{2^n n!} \int_{-1}^{1} (x^2 - 1)^n f^n(x) dx$	s 10	CO2	
Q8.	Establish the relation between beta and gamma function as	10	CO3	

	$\beta(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$			
	OR			
	Evaluate $\int_{-1}^{1} (1+x)^{p-1} (1-x)^{q-1} dx$ using gamma function.			
Q9.	Determine the extended power series solution of the differential equation $x^2y'' + 4xy' + (x^2 + 2)y = 0.$	10	CO2	
SECTION-C $(2Q \times 20M = 40 Marks)$				
Q10.	(a) A covariant tensor has components $xy, 2y - z^2, xz$ in rectangular	10	CO1	
	coordinates. Find its covariant components in spherical coordinates.			
	(b) Prove that Bessel function, $J_n(x)$ is the coefficient of z^n in the	10	CO2	
	expansion of $e^{\frac{x}{2}(z-\frac{1}{z})}$.			
Q11.	Articulate one-dimensional equation for a stretched string and solve it via	20	CO4	
	the method of separation of variables.			
	OR			
	(a) Formulate two-dimensional equation for a rectangular membrane.	10	CO4	
	(b) Solve the Laplace's equation in polar coordinates	10	CO4	
	$r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$			
	using the method of separation of variables.			