LU UPES

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Mathematical Physics II
Semester: III
Program: B.Sc. Physics (H)
Duration: 03 hrs.
Max. Marks: 100
Course Code: PHYS 2001

Instructions:

- There are three Sections (Section A, Section B and Section C).
- Section A: All the questions are compulsory.
- Section B: one question has internal choice.
- Section C: one question has internal choice.

SECTION A
(5Q $\times 4 M=20$ Marks)

S. No.		Marks	COs
Q1.	Define Isomorphism and Homomorphism with examples.	4	CO1
Q2.	Determine regular singular points of the differential equation $2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(x^{2}-4\right) y=0$	4	CO2
Q3.	Authenticate the recurrence relations of Bessel function $4 J_{n}^{\prime \prime}(x)=J_{n-2}(x)-2 J_{n}(x)+J_{n+2}(x) .$	4	CO2
Q4.	Validate $\Gamma(n+1)=n \Gamma(\mathrm{n})$, where Γ is a gamma function.	4	CO3
Q5.	Assess the Auxiliary equations of one-dimensional wave equation.	4	CO4
SECTION B		$(4 Q \times 10 M=40$ Marks $)$	
Q6.	Estimate the values of [22, 1] and [13, 3], using Christoffel symbols if $(d s)^{2}=(d r)^{2}+r^{2}(d \theta)^{2}+r^{2} \sin ^{2} \theta(d \varphi)^{2}$	10	CO1
Q7.	Validate for the function $f(x)$, for which the nth derivative is continuous and $P_{n}(x)$ is the Legendre polynomial of degree n. $\int_{-1}^{1} f(x) P_{n}(x) d x=\frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1}\left(x^{2}-1\right)^{n} f^{n}(x) d x$	10	CO2
Q8.	Establish the relation between beta and gamma function as	10	CO3

	$\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ OR Evaluate $\int_{-1}^{1}(1+x)^{p-1}(1-x)^{q-1} d x$ using gamma function.		
Q9.	Determine the extended power series solution of the differential equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0$	10	CO2
	SECTION-C (2Q	OM	Marks)
Q10.	(a) A covariant tensor has components $x y, 2 y-z^{2}, x z$ in rectangular coordinates. Find its covariant components in spherical coordinates. (b) Prove that Bessel function, $J_{n}(x)$ is the coefficient of z^{n} in the expansion of $e^{\frac{x}{2}\left(z-\frac{1}{z}\right)}$.	10 10	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
Q11.	Articulate one-dimensional equation for a stretched string and solve it via the method of separation of variables. OR (a) Formulate two-dimensional equation for a rectangular membrane. (b) Solve the Laplace's equation in polar coordinates $r^{2} \frac{\partial^{2} u}{\partial r^{2}}+r \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial \theta^{2}}=0$ using the method of separation of variables.	20 10 10	$\mathrm{CO4}$ $\mathrm{CO} 4$ $\mathrm{CO} 4$

