Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, November-December 2021

Course: Computational Physics Program: B. Sc. (H) : Physics

Course Code: PHYS 2014K

SECTION A

1. Each Question will carry 4 Marks

2. Instruction: Complete the statement / Select the correct answer(s)/Write short answers

S. No.	Question	СО			
Q1	Explain the importance of "Modules" in FORTRAN 90. Explain this by writing a program to				
	calculate arithmetic and geometric mean. You should display the use of modules in this.				
		CO1			
Q2	GNUPLOT has inbuilt facility to perform analysis of the data using regression. Considering that you have following data (stored in filename "data-Cp.txt"):				
	# Temperature (T, Kelvin) Heat Capacity (Cp, kJ/kg-K)				
	100 1.01 200 1.10				
	300 1.15				
	400 1.25				
	500 1.40				
	Using the data, write a GNUPLOT script which performs linear regression to fit the equation of a line				
	$C_p = mT + C$ and find various coefficients; m and C are the slope and intercept, respectively.				
Q3	Discuss following commands used in LaTeX:				
	a) \ldots				
	b) \ddots				
	c) \vdots				
	d) \cdots				
	e) \emph				
Q4	What are various curve smoothing/interpolation schemes present in GNUPLOT. Discuss each scheme briefly.				
Q5	Write following equations in LaTeX:				
	a) $y = x \tan(\cos x) + \log(\sin x) + 5$				
	b) $\phi = e^{i\theta} + m \cosh x + \log(\tan \gamma)$				
	SECTION B				
1.	Each question will carry 10 marks				
2.	Instruction: Write short / brief notes				
Q6	Write a GNUPLOT script to plot the following data and produce an image output in .png format. Label the axes and give title to the plot as "Year-wise comparison of Stock Prices". The name of the data file is "stock.txt".	CO3			

UNIVERSITY WITH A PURPOSE

Semester: III

Time 03 hrs. Max. Marks: 100

ing m e ar 990 991 992 994	52 1 67 1 53 1 67 1 46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the family	facility of G	nultiple axes" plot. Plot the data given in file "TwoAxis.txt" NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700 780	CO3
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 7rite in ing m ear 990 991 992 994	52 1 67 1 53 1 67 1 46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fanultiple axes Number of 500 700 900 860	44 40 22 25 17 16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
977 978 979 980 981 982 983 984 985 986 987 988 989 990 rite in ing m ear 990 991 992 994	67 1 53 1 67 1 46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	40 22 25 17 16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
978 979 980 981 982 983 984 985 986 987 988 989 990 rite in ing m ear 990 991 992 994	53 1 67 1 46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	222 25 17 16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
979 980 981 982 983 984 985 986 987 988 989 990 rite in ing m ear 990 991 992 994	67 1 46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	225 17 16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
980 981 982 983 984 985 986 987 988 989 990 7rite in ing m ear 990 991 992 994	46 1 60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	17 16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
981 982 983 984 985 986 987 988 989 989 989 7rite in ing m ear 990 991 992 994	60 1 50 1 66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	16 13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
982 983 984 985 986 987 988 989 990 7ite in ing m ear 990 991 992 994	50 1 66 70 1 91 133 127 136 154 127 n brief the fanultiple axes Number of 500 700 900 860	13 96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
983 984 985 986 987 988 989 990 7ite in ing m ear 990 991 992 994	66 70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	96 01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
984 985 986 987 988 990 rite in ing m ear 990 991 992 994	70 1 91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	01 93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
985 986 987 988 9990 rite in ing m ear 990 991 992 994	91 133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	93 92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
986 987 988 9990 rite in ing m ear 990 991 992 994	133 127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	92 95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	C03
987 988 989 rite in ing m ear 990 991 992 994	127 136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	95 79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	C03
988 989 990 rite in ing m ear 990 991 992 994	136 154 127 n brief the fa nultiple axes Number of 500 700 900 860	79 78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
989 990 rite in ing m ear 990 991 992 994	154 127 n brief the fa nultiple axes Number of 500 700 900 860	78 85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
990 rite in ing m 90 91 92 94	127 n brief the fa nultiple axes Number of 500 700 900 860	85 acility of "m facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
ing m e ar 990 991 992 994	Number of 500 700 900 860	facility of G	NUPLOT: Sold (× 1000) Number of Diesel Cars Sold (×1000) 690 860 980 700	CO3
990 991 992 994	500 700 900 860	Petrol Cars	690 860 980 700	
91 92 94	700 900 860		980 700	
92 94	900 860		980 700	
94	860		700	
	800		780	
99				
1 /1	1 .			
			ing the steepest increase in n in the following expressions	CO1
			ent by an algorithm:	COI
a)	T(n) = 500	$n + 100n^{1.5}$	$5 + 50n \log_{10} n$	
		$\log_2 n + n(\log_2 n)$		
	T(n) = 100		62.0)	
	· · ·		1 25	
		$+ n^{0.5} + 0.5n$		
		$n \log_3 n + n$		
Write the following text using LaTeX:				
The reaction of defects with the surface leads to changes in the concentration of A and B atoms at the boundary, simultaneously with surface motion. When a vacancy reacts with the surface, the loss of an atom from the surface is compensated by moving the surface inward. This process also increases the concentration of that particular atom at boundary node. Similarly, the reaction of a dumbbell deposits an atom at the surface. The gain of an atom at the surface results in moving the surface outward. At the same time, the boundary node gains an atom from the loss of the dumbbell interstitial. With these considerations, we may write the reaction rates of A and B atoms as follows: $\psi_A = -[\psi_{AA} + \psi_{AB}(B^{\rightarrow}) + \psi_v(A)]$				
	$- \psi_{RR}+\psi_{AR} $			
e e	atom same sider	atom at the surface same time, the bo siderations, we may $A_A = -[\psi_{AA} + \psi_{AB}]$ $B_B = -[\psi_{BB} + \psi_{AB}]$	atom at the surface. The gain of same time, the boundary node gasiderations, we may write the respectively $\mathbf{A} = -[\psi_{AA} + \psi_{AB}(\mathbf{B}^{\rightarrow}) + \psi_{\nu}(\mathbf{B}^{\rightarrow})]$	tom at the surface. The gain of an atom at the surface results in moving the surface outward. At same time, the boundary node gains an atom from the loss of the dumbbell interstitial. With these siderations, we may write the reaction rates of A and B atoms as follows:

	Make sure that the equations have numbering, and they should be referred in the text body.	
	Section C	
1. 2.	Each Question carries 20 Marks. Instruction: Write long answer.	
210	a) Differentiate between a function and a subroutine in FORTRAN 90. The increase in temperature dT of a chemical reaction can be calculated using $dT = 1 - \exp(-kT)$	(10+10)
	$k = \exp(-q)$	CO2
	$q = \frac{2000}{T + 273.16}$	
	 where T is the temperature in centigrade, and t is the time in seconds. Write a program in FORTRAN 90, which prints the temperature of such a reaction at 1 minute intervals. The initial temperature is supplied by the user and the above equation should be re-calculated once every second. The program should terminate when the temperature reaches twice the initial temperature. Your program should be modular, and use only subroutines for making the program modular. b) During a test flight of an open-rotor aircraft, the test pilot has set the engine power level at 40,000 Newtons, which causes the 20,000-kg aircraft to attain a cruise speed of 180 m/s (meters/second). The engine throttles are then set to a power level of 60,000 Newtons, and the aircraft begins to accelerate. As the speed of the plane increases, the aerodynamic drag increases in proportion to the square of the airspeed. Eventually, the aircraft reaches a new cruise speed where the thrust from the engines is just offset by the drag. The equations used to estimate the velocity and acceleration of the aircraft from the time that the throttle 	
	is reset until the plane reaches its new cruise speed (at approximately 120 s) are as follows: $v = 0.00001t^3 - 0.00488t^2 + 0.75795t + 181.3566$ $a = 3 - 0.000062v^2$	
	Write a program in FORTRAN 90 which asks the user to enter a time value that represents the time elapsed (in seconds) since the power level was increased. Compute and print the corresponding acceleration and velocity of the aircraft at the new time values. You should write a function for the velocity (v) and a subroutine for calculating the acceleration (a) .	
011	 a) The cost of sending a package by an express delivery service is 50 Rs for the first 2 kg, and 20 Rs for each kg or fraction thereof over 2 kg. If the package weighs more than 70 kg, a 100 Rs excess weight surcharge is added to the cost. No package over 100 kg will be accepted. Write a program in FORTRAN 77 that accepts the weight of a package in grams and computes the cost of mailing the package. Be sure to handle the case of overweight packages. The program should be modular. b) Write a program in FORTRAN 77 that computes the tax and tip on a restaurant bill for a patron with a \$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should be 15 percent of the total after adding the tax. Display the meal cost, tax amount, tip amount, and total bill on the screen. Use functions to calculate the tax and tip. 	(10+10) CO2
	OR	
	a) Write a program in FORTRAN 77 to evaluate the function	

$f(x) = \ln \frac{1}{1 - x}$	
For any user-specified value of x , where ln is natural logarithm (logarithm to the base e)	
Write the program using a while loop so that the program repeats the calculation for each	
legal value of x entered into the program. When an illegal value of x is entered, terminated	
the program.	
b) Radioactive elements decay at a rate characterized by their "half-life," defined as the	
time required for the original amount of radioactive material to decrease by half. For	
example, radon has a half-life of 3.8 days. If there are originally 100 mg of radon gas	
in an enclosed container, there will be 50 mg after 3.8 days, 25 mg after 7.6 days, and	
so forth. The process of radioactive decay can be described by the formula	
$A(t) = A_0 \exp(-t/\tau_0)$	
where A_0 is the initial amount, $A(t)$ is the amount after time t, t_0 is proportional to half-lift	e
$t_{ m half}$	
$t_0 = -\frac{t_{\text{half}}}{\ln(1/2)}$	
$l_{0} = ln(1/2)$	
For Radon, $t_0 = 5.48$ days. Write a program in FORTRAN 77 that calculates and prints the	
amount of radon remaining from a given original sample mass after a specified number of	
days (print this for several intervals). This program should have provision to output the data	
in an external file, which should contain two columns: time and amount of radon remaining	