

Q 2	Give an example of each of the following graphs i. Eulerian as well as Hamilton, ii. Eulerian but not Hamiltonian, iii. Hamiltonian but not Eulerian, and iv. Neither Eulerian nor Hamiltonian.	10	CO1
Q 3	Define vertex colouring. Explain Welch-Powell algorithm and using this algorithm determine the coloring of the graph as shown below and hence determine the chromatic number $\chi(G)$.	10	CO2
Q 4	Using Kruskal's algorithm, determine a minimal spanning tree of the weighted graph given below.	10	CO3
SECTION-C (Scan and upload) (2Qx 20M=40 Marks)		(2Qx 20M= 40 Marks)	
Q 1 A	Using Dijkstra's algorithm, determine the length of the shortest path and hence the shortest path in the following graphs from a to z.	10	CO2
Q 1 B	Using the decomposition theorem, determine the chromatic polynomial, and hence the chromatic number of the graph as shown below.	10	CO2

| Q 2 A |
| :--- | :--- | :--- | :--- | :--- |
| Using Prim's algorithm, determine a minimal spanning tree for the given |
| weighted graph. |

