Name:

Enrolment No:

.....

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Programme Name: B.Tech ASE and B.Tech ASE+AVECourse Name: Numerical MethodsCourse Code: MATH 2044Nos. of page(s): 03

Semester : III Time : 03 hrs Max. Marks : 100

Instructions: Attempt all questions from Section A (Q1-Q5, each carrying 04 marks); Section B (Q6-Q9, each carrying 10 marks); Section C (Q10 & Q11, each carrying 20 marks). Scientific calculators are allowed for the examination.

SECTION A (Attempt all questions)

		1	
S. No.		Marks	CO
Q1.	Let $x_0 = 1.5$ be the initial approximation of a root of the equation $x^2 + \log_e x - 2 = 0.$ Find an approximate root of the equation using fixed point iteration method (iteration method), correct upto three significant digits.	[4]	CO1
Q2.	Establish the operator relation $E \equiv e^{hD}$, where <i>E</i> and D denote the Shifting and Differential operators respectively. (<i>h</i> is the step-length).	[4]	CO2
Q3.	Show that the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 5 \\ 3 & 2 & -3 \end{bmatrix}$ is not factorable in form of $A = LU$ by Doolittle's method. Find a new matrix <i>B</i> by rearranging the rows of the matrix <i>A</i> so that <i>B</i> is factorable by that method. Give reason for your answer.		CO4
Q4.	Show that the partial differential equation $x^2u_{xx} - 2xy u_{xy} - 3y^2u_{yy} + u_y = 0$ is hyperbolic type at every points on <i>xy</i> -plane except for the coordinate axes $x = 0$ and $y = 0$. Identify the characteristic of the equation on coordinate axes.	[3+1]	CO6
Q5.	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dx} = -ky$, where $k = 0.01$. Given that $x_0 = 0$ and $y_0 = 100$. Determine how much substance will remain at the moment $x = 100$, using Modified Euler's method with the step-length $h = 100$.	[4]	CO5

	SECTION B		
	(Q6-Q8 are compulsory and Q9 has internal choice)		
Q6.	Fit a polynomial of degree three, which takes the following values, by Newton forward interpolation formula, and find $y(3.5)$.	[8+2]	CO2
	x 3 4 5 6		
	y 6 24 60 120		
Q7.	Use fourth order Runge-Kutta method to solve for $y(0.4)$ taking $h = 0.2$, for the following initial value problem. $\frac{dy}{dx} = 1 + y^2$, with the initial condition $y(0) = \lim_{x \to \infty} \frac{x^2}{2^x}$.	[10]	CO5
Q8.	Let $x_0 = 1.6$ be an initial approximation of the root of the following equation. $10xe^{-x^2} = 1$ Use Newton-Raphson method to find a positive root of that equation, correct to six decimal places.	[10]	CO1
Q9.	The speeds of an electric train at various times after leaving one station are given in the following table. Time $t(\text{in hour})$ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[10]	CO3
	SECTION-C		1
Q10.A	(Q10 is compulsory, and Q11.A and Q11.B have internal choice Interchange the equations of the following system to obtain a strictly	s)	
Q10.A	interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to evaluate an approximate solution, taking the initial approximation as $x_1^{(0)} = 1, x_2^{(0)} = 1, x_3^{(0)} = 1$. Perform three iterations. $x_1 - x_2 + 5x_3 = 7$ $6x_1 - x_2 + x_3 = 20$ $x_1 + 4x_2 - x_3 = 6$.	[3+7]	CO4

Q10.B	Show that the matrix $A = \begin{bmatrix} 4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26 \end{bmatrix}$ is decomposable by Cholesky method. Hence, find the solution of the following system of equations by that method. $4x_1 + 2x_2 + 6x_3 = 16$ $2x_1 + 82x_2 + 39x_3 = 206$ $6x_1 + 39x_2 + 26x_3 = 113$	[3+7]	CO4
Q11.A	Solve the Laplace equation $u_{xx} + u_{yy} = 0$ with $h = \frac{1}{3}$ over the boundary of a square of unit length with $u(x, y) = 16x^2y^2$ on the boundary by Liebmann's iteration process. Perform three iterations using Gauss Seidel method. OR Solve the Poisson's equation $u_{xx} + u_{yy} = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x = 0, y = 0, x = 3, y = 3$ with $u = 0$ on the boundary and mesh length 1. Perform one iteration by Gauss Seidel method to solve the linear equations in u assuming initial solution as $(0,0,0,0)$.	[10]	CO6
Q11.B	Solve $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ with the conditions $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4-x)$ taking $h = 1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{xx} = 16u_t$, $0 < x < 1$, $t > 0$, given that $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = 50t$. Compute u for two steps in t direction taking $h = \frac{1}{4}$.	[10]	CO6