

Instructions: Attempt all questions from Section A (Q1-Q5, each carrying 04 marks); Section B (Q6-Q9, each carrying 10 marks); Section C (Q10 \& Q11, each carrying 20 marks). Scientific calculators are allowed for the examination.

SECTION A (Attempt all questions)			
S. No.		Marks	CO
Q1.	Let $x_{0}=1.5$ be the initial approximation of a root of the equation $x^{2}+\log _{e} x-2=0$ Find an approximate root of the equation using fixed point iteration method (iteration method), correct upto three significant digits.	[4]	CO1
Q2.	Establish the operator relation $E \equiv e^{h D}$, where E and D denote the Shifting and Differential operators respectively. (h is the step-length).	[4]	CO 2
Q3.	Show that the matrix $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 2 & 5 \\ 3 & 2 & -3\end{array}\right]$ is not factorable in form of $A=L U$ by Doolittle's method. Find a new matrix B by rearranging the rows of the matrix A so that B is factorable by that method. Give reason for your answer.	[2+2]	CO4
Q4.	Show that the partial differential equation $x^{2} u_{x x}-2 x y u_{x y}-$ $3 y^{2} u_{y y}+u_{y}=0$ is hyperbolic type at every points on $x y$-plane except for the coordinate axes $x=0$ and $y=0$. Identify the characteristic of the equation on coordinate axes.	[3+1]	CO6
Q5.	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{d y}{d x}=-k y, \text { where } k=0.01$ Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=100$.	[4]	$\mathrm{CO5}$

Q10.B	Show that the matrix $A=\left[\begin{array}{ccc}4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26\end{array}\right]$ is decomposable by Cholesky method. Hence, find the solution of the following system of equations by that method. $\begin{gathered} 4 x_{1}+2 x_{2}+6 x_{3}=16 \\ 2 x_{1}+82 x_{2}+39 x_{3}=206 \\ 6 x_{1}+39 x_{2}+26 x_{3}=113 \\ \hline \end{gathered}$	[3+7]	CO4
Q11.A	Solve the Laplace equation $u_{x x}+u_{y y}=0$ with $h=\frac{1}{3}$ over the boundary of a square of unit length with $u(x, y)=16 x^{2} y^{2}$ on the boundary by Liebmann's iteration process. Perform three iterations using Gauss Seidel method. OR Solve the Poisson's equation $u_{x x}+u_{y y}=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1 . Perform one iteration by Gauss Seidel method to solve the linear equations in u assuming initial solution as ($0,0,0,0$).	[10]	CO6
Q11.B	Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=$ $x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$, given that $u(x, 0)=0, u(0, t)=0, u(1, t)=50 t$. Compute u for two steps in t direction taking $h=\frac{1}{4}$.	[10]	CO6

