Name: Enrolm	ent No:	
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES	
		: III : 03 hrs : 100
	SECTION A	
S. No.	(Attempt all questions; Each question carries 4 marks)	СО
Q1.	Consider the set $S = \{1,2,3,4,6,9\}$ and a partial order relation ' ' defined on S as " $a b$ if a divides b". Find the maximal elements, minimal elements, greatest element and lease element of the partial ordered set $(S,)$.	!
Q2.	Find the linear homogeneous recurrence relation with constant coefficients having its general solution as $a_n = c_1 3^n + (c_2 + c_3 n) 2^n$, where c_1, c_2, c_3 are arbitrary constants.	CO4
Q3.	Check the compound proposition $((p \lor q) \land (p \to r) \land (q \to r))$ is a tautology, contradiction or contingency.	CO2
Q4.	Find inverse Laplace transform of $\frac{s^2 - 3s + 4}{s^3}$.	C01
Q5.	Determine the sequence $\{a_n\}$ having generating function as $\frac{x}{1-2x}$.	CO4
	SECTION B	
	(All the questions are compulsory; Each question carries 10 marks)	
Q6.	Consider the partial ordered set $A = \{1,2,3,4,5,6,7,8\}$ with the partial order relation $R = \{(1,3), (2,3), (3,4), (3,5), (4,6), (4,7), (5,6), (5,7), (6,8), (7,8)\}.$ a. Draw Hasse diagram of (A, R) . b. Find lower and upper bounds of the subset $B = \{3,4,5\}$ of A . c. Find greatest lower bound (glb) and least upper bound (lub) of B .	CO3
Q7.	Find the Laplace transform of $\int_0^t \frac{e^{-t} \sin t}{t} dt$.	CO1
Q8.	Let D_n denote the set of all the positive divisors of n . By constructing closure tables for lub (V) and glb (Λ) show that D_{15} is a lattice.	CO3

Q9.	Represent the following argument symbolically and determine whether the argument is valid.	
	"Robbery was the motive for the crime if the victim had money in his pockets. But robbery or vengeance was the motive for the crime. Therefore, vengeance must have been the motive for the crime"	CO2
	SECTION C	
(Q10A	a. and Q10B are compulsory. Q11A and Q11B both have internal choices; Each question marks)	carries 10
Q10A.	Using truth table, find the principal conjunctive normal form (pcnf) and principal disjunctive normal form (pdnf) of $(p \land \neg q \land \neg r) \lor (q \land r).$	CO2
Q10B	Establish the following equivalence using truth table $(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r).$	CO2
Q11A	Solve the following recurrence relation using generating function $y_{n+2} - 2y_{n+1} + y_n = 2^n, y_0 = 2, y_1 = 1.$ OR Given that generating function of the sequence $\{a_n\}$ is $G(x)$. Find the generating function of $\{a_{n+1}\}, \{a_{n+2}\}$ and $\{a_{n+3}\}.$	CO4
Q11B	Solve the recurrence relation of the Fibonacci sequence of the numbers $y_n = y_{n-1} + y_{n-2}$, $n \ge 2$ with the initial conditions $y_0 = 0$ and $y_1 = 1$. OR Solve the recurrence relation of the Lucas sequence of the numbers $y_n = y_{n-1} + y_{n-2}$, $n \ge 2$ with the initial conditions $y_0 = 1$ and $y_1 = 3$.	CO4

END