

Q9.	Represent the following argument symbolically and determine whether the argument is valid. "Robbery was the motive for the crime if the victim had money in his pockets. But robbery or vengeance was the motive for the crime. Therefore, vengeance must have been the motive for the crime"	CO2
SECTION C (Q10A. and Q10B are compulsory. Q11A and Q11B both have internal choices; Each question carries 10 marks)		
Q10A.	Using truth table, find the principal conjunctive normal form (penf) and principal disjunctive normal form (pdnf) of $(p \wedge \sim q \wedge \sim r) \vee(q \wedge r)$	CO2
Q10B	Establish the following equivalence using truth table $(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$	CO2
Q11A	Solve the following recurrence relation using generating function $y_{n+2}-2 y_{n+1}+y_{n}=2^{n}, y_{0}=2, y_{1}=1$ OR Given that generating function of the sequence $\left\{a_{n}\right\}$ is $G(x)$. Find the generating function of $\left\{a_{n+1}\right\},\left\{a_{n+2}\right\}$ and $\left\{a_{n+3}\right\}$.	CO4
Q11B	Solve the recurrence relation of the Fibonacci sequence of the numbers $y_{n}=y_{n-1}+$ $y_{n-2}, n \geq 2$ with the initial conditions $y_{0}=0$ and $y_{1}=1$. OR Solve the recurrence relation of the Lucas sequence of the numbers $y_{n}=y_{n-1}+y_{n-2}$, $n \geq 2$ with the initial conditions $y_{0}=1$ and $y_{1}=3$.	CO4

