11 UPES
 UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, December 2021
Course: Cryptography and Network Security
Semester: V
Program: BTech-CS-BT
Time : 03 hrs .
Course Code: CSEG4001
Max. Marks: 100
Instruction: Attempt all questions. Internal choice is given, where ever applicable.

Section A (5Q x 4M = 20 Marks)			
$\begin{aligned} & \text { S. } \\ & \text { No. } \end{aligned}$		Marks	CO
Q 1	What do you understand by Session Management in HTTP?	5	CO1
Q 2	Differentiate between Data masking and Data Erasure. Give Example	5	CO1
Q 3	Discuss two forms of Input Validation Attacks: Buffer Overflow and Cross-Site-Scripting. Give Examples.	5	CO4
Q 4	(a)Which elements in the set $\mathbf{Z} \mathbf{5}=\{0,1,2,3,4\}$ are not members of the set $\mathbf{Z}_{\mathbf{5} *}$? (b) Result of $-16 \bmod 13=$ \qquad (c) State either true or false: $-3 \equiv 7(\bmod 5)$	5	CO 2
Q 5	Explain the concept of firewalls.	5	CO1
Section B (4Q x 10M = 40 Marks)			
Q 1	Differentiate between weak, strong, and complete collision resistant characteristics in hashing algorithm. Is Birthday Paradox helpful in providing a strong hashing algorithm? If yes, discuss briefly.	10	CO 2
Q 2	Discuss Key Management approaches and their importance in real-time scenarios.	10	CO3
Q 3	What do you understand by Cookie? Why do we use cookies in web applications? List various security threats related to cookies. OR List various forms of Malware attacks. How can you protect your computer from malware?	10	CO4
Q 4	Draw DES Feistel network structure with neat and clean diagram	10	CO2
Section C (2Q x 20M = 40 Marks)			
Q 1	(a) State RSA encryption and decryption as a trap-door one-way function. Explain the key generation process in RSA. (b) Perform encryption and decryption using RSA algorithm with input parameters given as $p=$ $3, q=11, e=7$, and $M=5$.	20	CO 3

OR							
	(a) Explain the procedure to generate the session key in Diffie-Hellman key exchange algorithm. (b) In a Diffie-Hellman system, prime number p and its primitive root g are selected as 23 and 7 respectively. Further, Alice and Bob decide their private keys as 3 and 6, respectively. (i) Find the secret shared key. (ii) Show that 7 is a primitive root of 23.	$\mathbf{2 0}$	$\mathbf{C O 3}$				
Q 2	(a) List all the transformations performed in a typical AES round with a brief description of each. Which of the listed operations is skipped in the last AES round? (b) Multiply $x_{3}+x_{2}+x+1$ by $x_{3}+1$. Use $x_{4}+x_{3}+1$ as modulus.	$\mathbf{C O 2}$					

