Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021			
Progr Cours Cours Nos. 0	name Name: B Tech CSE (All Branches) Semest Name $:$ Computer Graphics Time Code $:$ CSEG3003 Max. M page(s) $: 03$	$\begin{array}{rr} \text { r } \quad \text { V } \\ \text { arks: } & 03 \end{array}$	
SECTION A			
S. No.		Marks	CO
Q1	Discuss the importance of a call back function and how it is different from ordinary function. Mention four different type of call back functions along with their code snippets.	04	CO1
Q2	Explain the difference between Phong shading and Gouraud shading.	04	CO 2
Q3	State the names of different color models in Computer Graphics. Illustrate any one of them briefly.	04	CO 3
Q4	Demonstrate the techniques that can be used to provide text clipping in a Graphics package.	04	CO 4
Q5	How much time is spent scanning across each row of pixels during screen refresh on a raster system with resolution of 1280 X 1024 and a refresh rate of 60 frames per second.	04	CO1
SECTION B Each question will carry 10 marks.			
Q6.	a) Demonstrate Cohen Sutherland line clipping algorithm. b) Apply Liang Barsky line clipping algorithm for calculating the saved portion of line from $(2,7)$ to $(8,12)$ in a window $(X W \min =Y W \min =5)$ and $(X W m a x$ $=Y W \max =10$).	10	CO 2
Q7.	Illustrate 3 dimensional homogeneous matrix to rotate by π degrees about the line passing through the point $(0,0,0)$ and $(1,0,1)$.	10	CO 3

Q8.	Demonstrate Z buffer algorithm (do include diagrammatic representation) along-with its advantages and disadvantages.	10	CO4
OR			
	Demonstrate the matrix representations for Reflection about X-axis, Y-axis, about the straight-line $\mathbf{y}=\mathbf{x}$ and $\mathbf{y}=-\mathbf{x}$ and about the origin. A mirror is placed vertically such that it passes through points $(10,0)$ and $(0,10)$. Find the reflected view of the triangle ABC with coordinates $\mathrm{A}(5,50), \mathrm{B}(20,40), \mathrm{C}(10,70)$.	10	CO4
Q9.	a) Illustrate the following terminology with diagram: (any one) i) NURBS. ii) Fractals. iii) Knot Vector. b) Find the equation of Bezier curve which passes through $(0,0)$ and $(-4,2)$ and controlled through $(14,10)$ and $(4,0)$.	10	CO1
1. Each Question carries 20 Marks. 2. Instruction: Write long answer.			
Q10.	A solid tetrahedron is given by position vectors $\mathrm{A}(1,1,1), \mathrm{B}(3,1,1), \mathrm{C}(2,1,3)$ and D $(2,2,2)$ and a point light source is kept at $\mathrm{P}(2,3,4)$. Using Back Face detection method, find the surfaces on which light falls and the surfaces which are to be shadowed.	20	CO 2
Q11.	Illustrate the solution for scan line filling algorithm for a polygon $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, G\}. whose vertices are $\{(2,7)(4,12)(8,15)(16,9)(11,5)(8,7)(5,5)\}$. Prepare all edge tables according to scan line filling algorithm.	20	CO 3
	OR		
	Find below the ways in which the ray can intersect/not intersect with the sphere. i.e., when is there exactly one intersection, when are there two intersections, and when are there no intersections. - 0 intersection points: iA , iiB , and iiiC - 1 intersection point: iiA and iiiB - 2 intersection points: iiiA	20	CO 3

Demonstrate the algorithm along with the code snippet in OpenGL to find the

