

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Operation Research and Optimizations

Program: B.Tech (CSE-BAO)

Course Code: CSBA 3004

Semester: V

Duration: 03 hrs.

Max. Marks: 100

Instructions:

	cuons:		SE	CTION A				
				and upload	d) (5Qx 4M = 20 Marks		
			,	•		Marks	COs	
Q1	A computer center has four expert programmers (A, B, C, and needs to develop four application programs (1,2, 3,,4). The head of the computer center, estimates the computer time (in minutes) required by the respective experts to develop the application programs as follows:					4	CO3	
		A	В	С	D			
	1	120	100	80	90			
	2	80	90	110	70			
	3	110	140	120	100			
	4	90	90	80	90			
Q2	to develo	Find the assignment pattern that minimizes the time required to develop the application programs. What are the main elements of a queuing system?					CO4	
Q3	Explain four important characteristics of operations research.				4	CO1		
Q4	What do you mean by saddle point in game theory?			4	CO5			
Q5	Explain briefly.	the concept o	f ranked goa	ıls in goal pr	ogramming	4	CO2	
				CTION B				
	1		(Scan a	and upload)	(4		Qx10M = 40 Marks)	
						Marks	COs	
Q1	Use graphical method to: Maximize: $Z = 5x1 + x2$; subject to $x1 + x2 \le 10$, $2x1 + 3x2 \ge 10$; $1, x2 \ge 0$.					10	CO1	
Q2	Use the Hungarian method to solve the following assignment problem:				10	CO3		

		1	T				
Q3	M ₁ 10 9 7 8 M ₂ 5 8 7 7 M ₃ 5 4 6 5 M ₄ 2 3 4 5 5 Solve the following game: Player A1 has value corresponding to Players B1 and B2 is 30, 2.	10	CO4				
	Player A2 has value corresponding to Players B1 and B2 is 4, 14. Player A3 has value corresponding to Players B1 and B2 is 6, 9. Predict whether this game has saddle point or not. a. No saddle point exist b. Saddle point exist c. Saddle point exist with 10 value. d. Saddle point exist with 4 value.						
Q4	What is inventory management? What are the basic principles of inventory management? OR What are the basic principles of queuing theory? Discuss about Simple two-equation queue.	4+6=10 5+5=10	CO4				
	about Simple two equation queue.						
	SECTION C	•	•				
	(Scan and upload) (2Qx 20M = 40 Marks)						
Q1	What is random variable? Give some examples. What are discrete and continuous random variable? What is the main difference between these? Explain the usefulness of saddle point in game theory.	6+4+4+6 =20	CO5				
Q2	What is feasible and infeasible solution? What is the usefulness of operations research in business?	6+6+8=20	CO2				
	Solve the following problem and predict the solution: Max Z = -x1 + 2x2; Subject to x1-x2 <=-1; -0.5x1+x2 <=2; x1,x2>=0; a. Unbounded solution b. No feasible solution c. Unique optimal solution d. Multiple optimal solution						
	OR						
		9+5+6=20	CO2				

Discuss the Knapsack problem. What are the basic methods	
for solving the problem? What is meant by linear	
programming and integer programming? Give an example.	