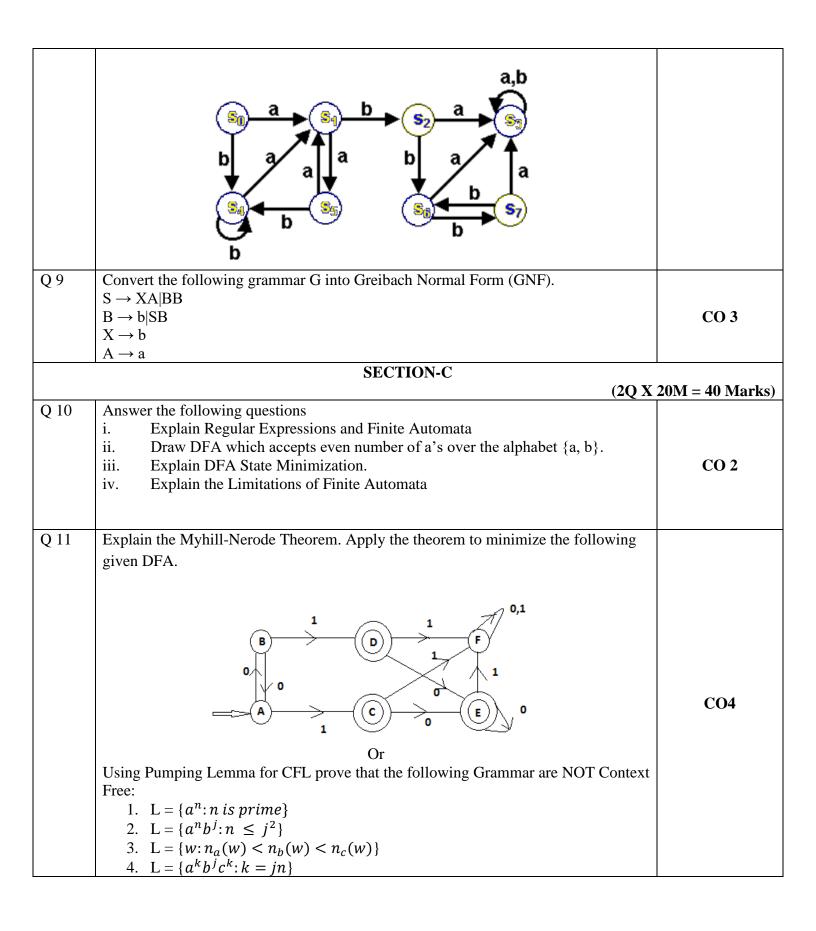


UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2021**

Semester: V


Time 03 hrs.

Course: Formal Language and Automata Theory

Program: B.TECH CS LLB

Course Code: CSEG3004 Max. Marks: 100

Instructions: SECTION A		
S. No.	Question	CO
Q 1	Construct a DFA that is defined over $\Sigma = \{a, b, c\}$ that accepts all strings having consecutive "abc".	CO 3
Q 2	Construct a PDA that accepts all strings recognized by the language $L = \{a^n b^n, n > 0\}$	CO 4
Q 3	Explain what Left Recursion is and state how we can remove left recursion.	CO 3
Q 4	Differentiate between Mealey and Moore machines.	CO 2
Q 5	"We need to use automata without outputs even though we have automata with outputs", Comment.	CO 1
	SECTION B	
	(4Q X)	10M = 40 Marks)
Q 6	In order to find out a regular expression of a Finite Automaton, we use Arden's Theorem along with the properties of regular expressions. Statement – "Let P and Q be two regular expressions. If P does not contain null string, then $R = Q + RP$ has a unique solution that is $R = QP^*$ " Prove the Arden's Theorem.	CO 1
Q 7	Construct a Mealey Machine that gives 2's compliment of any Binary Input. (Assume that the least carry bit as neglected).	CO 1
Q 8	Let L1 and L2 be two regular languages. Prove that the language L=L1 ∩ L2 is also regular. OR	CO 2
	Reduce the following DFA:	

