Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Formal Languages and Automata Theory Program: B. Tech.-CSE- (Honors) Course Code: CSEG2035P

Semester : III Time :03 hrs. Max. Marks : 100

Instructions:

SECTION A (Attempt all questions)

S. No.	Question	Marks	СО	
Q 1	State and prove Arden's theorem. Discuss its applications.	3+1	CO1	
Q 2	Discuss the closure properties of context free languages.	4	CO2	
Q 3	Describe the Chomsky Hierarchy of grammar.	4	CO3	
Q 4	Define the following terms: i. Recursive and Recursive enumerable language ii. Decidable and undecidable language	4	CO4	
Q 5	Prove that regular languages are closed under intersection operation.	4	CO2	
	SECTION B (Attempt all questions)			
Q 6	Construct a minimized DFA accepting all strings over {0, 1} ending in 010 or 0010.	10	CO1	
Q 7	Design a Moore machine which will count how many times substring aab occurs in a long input string composed of {a, b}. Count can be maintained by printing 1 each time substring aab occurs.	10	CO2	
Q 8	Find a grammar in Chomsky normal form equivalent to $S \rightarrow AACD A \rightarrow aAb \Lambda C \rightarrow aC a D \rightarrow aDa bDb \Lambda$ OR Eliminate the useless symbols from the following grammar: $S \rightarrow AB AC A \rightarrow aC a C \rightarrow c D \rightarrow d$	10	CO3	
Q 9	Show that Fibonacci numbers are generated by primitive recursive function.	10	CO4	
	SECTION-C (Attempt all questions)			
Q 10	 i. Using pumping lemma prove that the language L= {a^p p is a prime number} is a non-regular language. ii. Prove that minimization of DFA is a decidable problem. 	10*2= 20	CO1 CO4	
	 i. Design a Turing machine for the two's complement of a binary number and show the processing of one string. ii. Design a PDA for L= {x x ∈ (a, b)* and n_a (x) > n_b (x)} and show the processing of one valid and one invalid string. 			
Q11				

i.	Design a Turing machine to recognize an arbitrary string divisible by 4 from	
	$\{0, 1, 2\}$	
ii.	Show that set of all strings over $\{a, b\}$ consisting of equal number of a's and	
	b's is accepted by deterministic push down automata.	