Prog Cour	rse: Applied Statistics Semester : II gram: B.Tech CS- AI&ML Duration : 03 rse Code: CSBA2010 Max. Marks: 10 ructions: All Questions are compulsory (Internal choices are given in questions, wherever a SECTION A	3 hrs. 0)
	(Scan and upload) (5Qx 4M	[= 20 Mar	·ks)
		Marks	COs
<u>Q1</u> Q2	Cite at least two examples from your own experience illustrating the application of statistics The total scores X obtained by 50 students in a psychology test of 100 marks are given below. $\begin{bmatrix} 75 & 89 & 66 & 52 & 90 & 68 & 83 & 94 & 77 & 60 \\ 38 & 47 & 87 & 65 & 97 & 49 & 65 & 70 & 73 & 81 \\ 85 & 77 & 83 & 56 & 63 & 79 & 69 & 82 & 84 & 70 \\ 62 & 75 & 29 & 88 & 74 & 37 & 81 & 76 & 74 & 63 \\ 69 & 73 & 91 & 87 & 76 & 58 & 63 & 60 & 71 & 82 \\ \end{bmatrix}$	4 1 x 4= 4	CO1 CO1
Q 3	 Answer the following question on the basis of the data given above. a) Is the random variable X = Score of a student, discrete or continuous? What are the minimum and maximum scores? b) Using the classes 20 - 29, 30 - 39, 40 - 49, and 90 - 99 draw up the frequency distribution of X. c) What percentage of the students score above the pass marks of 50? d) How many of the students score between 50 and 79? 	4	CO3
Q J	Or A coin is tossed 4 times , what is the probability of getting , a) Exactly 2 heads b) At least 2 heads		
Q 4	 Given the following sample of 20 numbers: 12 41 48 58 14 43 50 59 15 45 52 72 18 45 54 78 41 47 56 79 a) Compute the mean, the variance, and the standard deviation. b) If the largest value in the above set of number is changed to 500 to what degree are the mean and variance affected by the change? 	3+1=4	CO1
Q 5	What is hypothesis testing? What are the Type I and Type II errors in hypothesis testing?	4	CO2
	Р.Т.О		

						SECTIO				(10, 10)		- . .
Q 1	Flucida	to the role	of statist	ice in res		and uplo		montion th	a stops of		$\frac{\mathbf{M} = 40 \ \mathbf{N}}{10}$	larks) CO1
ΥI	1 Elucidate the role of statistics in research and development and mention the steps of research process											
Q 2	The mea	U						iation is 15 ve heights		uming that 120 and	10	CO2
Q 3	believes span to a) Stat b) At 9 What ar	this values this values this values the 1.8 year the nule of the nule of the nule of the the nule of the the difference the difference the difference the difference of the the difference of the	ue to be i ears with l & altern idence le	less, usin a standar nate hypo evel is the ethods of	g sample rd deviat othesis. ere enoug Or	e of 10 ba tion of 1.: gh confid	tteries 1 5. ence to	he measur discard th	res the av	vpothesis	10	CO2
Q 4	Calculate	e the coef	ficient of	correlatio	on betwee	en X and Y	7				10	CO3
		V	22	07	20	20	20	20	21	7		
		Х	23	27	28	28	29	30	31			
		Y	18	20	20	27	21	29	27			
										An engineer average life10CO2I hypothesis set? Mention10CO3 10 CO3 $(2Qx 20M = 40 \text{ Marks})$ 10 $4Q x$ $5=20$ CO4 $4Q x$ $5=20$ CO4		
					5	SECTION	N-C					
Q1	 Elucidate the following with examples (Attempt any 4) a. Decision Trees b. Neural Networks c. Cluster Analysis d. Factor Analysis e. Classification 											CO4
Q 2	 Sales data of 10 months for a coffee house situated near a prime location of a city comprising the number of customers (in hundreds) and monthly sales (in Thousand Rupees) are given below: 											CO3
	S. No No. of Customers (in Monthly Sales (in											
	hundreds)					thousand Rs.)						
	1	6.0			01							
	2	6.1			06							
	3	6.2			08							
	4 5	6.3			10							
	5	6.5			11 20							
	0 7	7.6			20							
	8	7.8			21							
	9	8.0			23							
	10	8.1			25							
	Find the	simple li	near regre	ession equ Or	ation that	t fits the g	iven data	a.				

The Variance of certain dimension article produces by a machine is 7.2 over a long period. A random sample of 20 articles gave variance 8.Is it justifiable to conclude that variability has increased at 5% level of significance assuming that the measurement of dimension article is normally distributed?

egrees	.005 (1-tail)	.01 (1-tail)	cance leve	.05 (1-tail)	.10 (1-tail)	.25 (1-tail)
of		.01 (1-tail) .02 (2-tails)	, ,	· · ·	, ,	
reedom	.01 (2-tails)	, ,	· · ·	, ,	.20 (2-tails)	.50 (2-tails)
1	63.657	31.821	12.706	6.314	3.078	1.000
2	9.925	6.965	4.303	2.920	1.886	.816
3	5.841	4.541	3.182	2.353	1.638	.765
4	4.604	3.747	2.776	2.132	1.533	.741
5	4.032	3.365	2.571	2.015	1.476	.727
6	3.707	3.143	2.447	1.943	1.440	.718
7	3.500	2.998	2.365	1.895	1.415	.711
8	3.355	2.896	2.306	1.860	1.397	.706
9	3.250	2.821	2.262	1.833	1.383	.703
10	3.169	2.764	2.228	1.812	1.372	.700
11	3.106	2.718	2.201	1.796	1.363	.697
12	3.054	2.681	2.179	1.782	1.356	.696
13	3.012	2.650	2.160	1.771	1.350	.694
14	2.977	2.625	2.145	1.761	1.345	.692
15	2.947	2.602	2.132	1.753	1.341	.691
16	2.921	2.584	2.120	1.746	1.337	.690
17	2.898	2.567	2.110	1.740	1.333	.689
18	2.878	2.552	2.101	1.734	1.330	.688
19	2.861	2.540	2.093	1.729	1.328	.688
20	2.845	2.528	2.086	1.725	1.325	.687
21	2.831	2.518	2.080	1.721	1.323	.686
22	2.819	2.508	2.074	1.717	1.321	.686
23	2.807	2.500	2.069	1.714	1.320	.685
24	2.797	2.492	2.064	1.711	1.318	.685
25	2.878	2.485	2.060	1.708	1.316	.684
26	2.779	2.479	2.056	1.706	1.315	.684
27	2.771	2.473	2.052	1.703	1.314	.684
28	2.763	2.467	2.048	1.701	1.313	.683
29	2.756	2.462	2.045	1.699	1.311	.683
arge	2.575	2.327	1.960	1.645	1.282	.675

Degrees of Freedom	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01
1		0.001	0.004	0.016	2.706	3.841	5.024	6.635
1 2 3 4	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086
6 7	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688
14 15	4.660 5.229	5.629 6.262	6.571 7.261	7.790 8.547	21.064 22.307	23.685 24.996	26.119 27.488	29.141 30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18 19	7.015 7.633	8.231 8.907	9.390 10.117	10.865 11.651	25.989 27.204	28.869 30.144	31.526 32.852	34.805 36.191
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566
21 22	8.897 9.542	10.283 10.982	11.591 12.338	13.240 14.042	29.615 30.813	32.671 33.924	35.479 36.781	38.932 40.289
23	9.542	11.689	12.558	14.042	32.007	35.924	38.076	41.638
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642
27	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278
29	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588
30	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892