

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Algorithm Design and Analysis **Program:** M.Tech CSE **Course Code:** CSE7001 **No. of pages :** 2 Semester: I Time : 03 hrs. Max. Marks: 100

Instruction: Attempt all questions. Internal choice is given, where ever applicable.

SECTION A					
(5Qx 4M = 20 Marks)					
Q. No.		Marks	СО		
1	Explain the P, NP, NP-hard, NP-complete classes.	4	CO4		
2	Obtain the asymptotic upper bound using recursion tree for $T(n)=2T(n/2)+n^2$	4	CO1		
3	An array $A(n)$ contains n elements of the same value that means $A[1] = A[2] = A[3] =$ = $A[n] = x$. Calculate the complexity of sorting $A(n)$ using quick sort?	4	CO1		
4	Compute the MST using Prim's strategy for the following graph a 7 8 f 7 $h5$ g 9 g 8 f 7 $h6$ g	4	CO2		
5	C 9 15 Why you need approximation algorithms? SECTION B	4	CO4		
	(4Qx10M = 40)	0 Marks)			
6	Let A[0n - 1] be an array of n distinct positive integers in unsorted arrangement. If $i < j$ and A[i] > A[j] then the pair (i, j) is called an inversion of A. Given n and an array A, devise O(n log n) algorithm to find the number of inversions of A.	10	CO3		
7	Draw the state space tree for 4 queen's problem (OR) Let m=31 and w= {7,11,13,24} draw a portions of state space tree using algorithm sum_subset(). Clearly show the solutions obtained.	10	CO3		

			ı
8	Consider the travelling salesperson problem given by following cost matrix $ \begin{bmatrix} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix} $ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.	10	CO4
9	 (a) What is overlapping sub problems explain it through an example 5 Marks (b) Compute/Prove the following time complexity equations 5 Marks i) 5N³+106n² is Θ(n²) ii) 3ⁿ⁺¹ is O(3ⁿ) 	10	CO2
	SECTION-C		
	$(2Qx \ 20M = 40)$) Marks)	
10	Compute All Pairs Shortest Path for the following graph	20	CO3
11	You are given two sorted arrays of lengths m and n. give a $O(\log m + \log n)$ time algorithm for computing the k-th smallest element in the union of the two arrays. Keep in mind that the elements may be repeated.		
	(OR)	20	CO4
	Let T be a text of length n, and let P be a pattern of length m. Describe an $O(n+m)$ time method for finding the longest prefix of P that is a substring of T.		