UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, December 2021

Course: Algorithm Design and Analysis
Semester: I
Program: M.Tech CSE
Course Code: CSE7001
Time : 03 hrs .
Max. Marks: 100
No. of pages : 2
Instruction: Attempt all questions. Internal choice is given, where ever applicable.

SECTION A \quad (5Qx 4M = 20 Marks)			
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$		Marks	CO
1	Explain the P, NP, NP-hard, NP-complete classes.	4	CO4
2	Obtain the asymptotic upper bound using recursion tree for $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$	4	CO1
3	An array $A(n)$ contains n elements of the same value that means $A[1]=A[2]=A[3]=\ldots$ $=A[n]=x$. Calculate the complexity of sorting $A(n)$ using quick sort?	4	CO1
4	Compute the MST using Prim's strategy for the following graph	4	CO2
5	Why you need approximation algorithms?	4	CO4
SECTION B			
6	Let $\mathrm{A}[0 \ldots \mathrm{n}-1]$ be an array of n distinct positive integers in unsorted arrangement. If $\mathrm{i}<\mathrm{j}$ and $A[i]>A[j]$ then the pair (i, j) is called an inversion of A. Given n and an array A, devise $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm to find the number of inversions of A .	10	CO3
7	Draw the state space tree for 4 queen's problem (OR) Let $\mathrm{m}=31$ and $\mathrm{w}=\{7,11,13,24\}$ draw a portions of state space tree using algorithm sum_subset(). Clearly show the solutions obtained.	10	CO3

8	Consider the travelling salesperson problem given by following cost matrix $\left[\begin{array}{ccccc} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{array}\right]$ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.	10	CO4
9	(a) What is overlapping sub problems explain it through an example 5 Marks (b) Compute/Prove the following time complexity equations i) $5 \mathrm{~N}^{3}+106 \mathrm{n}^{2}$ is $\Theta\left(\mathrm{n}^{2}\right)$ ii) $3^{\mathrm{n}+1}$ is $\mathrm{O}\left(3^{\mathrm{n}}\right)$	10	CO 2
SECTION-C			
10	Compute All Pairs Shortest Path for the following graph	20	CO3
11	You are given two sorted arrays of lengths m and n. give a $\mathrm{O}(\log m+\log n)$ time algorithm for computing the k -th smallest element in the union of the two arrays. Keep in mind that the elements may be repeated. (OR) Let T be a text of length n, and let P be a pattern of length m. Describe an $O(n+m)$ time method for finding the longest prefix of P that is a substring of T .	20	CO4

