

Q9	Determine the values of λ and μ such that the system $2 x-5 y+2 z=8$, $2 x+4 y+6 z=5, x+2 y+\lambda z=\mu$ has (i) no solution (ii) unique solution (iii) infinitely many solutions. Also, find the unique solution of the system. (OR) Solve the following homogeneous system for its non-trivial solutions (if any) $x+3 y+2 z=0,2 x-y+3 z=0,3 x-5 y+4 z=0, x+17 y+4 z=0$.	10M	CO2
	SECTION C (Answer all the questions. Each question carries 20 marks)		
Q10	(i) Find the maximum and minimum values of the function $f(x)=x^{3}-6 x^{2}+9 x+1$ (ii) Use logarithmic differentiation to find $\frac{d y}{d x}$ if $f(x)=\left(5-3 x^{2}\right)^{7} \sqrt{6 x^{2}+8 x-12}$. OR (i) Evaluate $\int e^{a x} \sin b x d x$ using Integration by parts technique. (ii) Define Implicit function. Evaluate $\frac{d y}{d x}$ at $x=3$ if $2 y^{3}+4 x^{2}-y=x^{6}$.	20M	CO3
Q11	a) Define the Rank of a matrix. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$ by reducing it into its normal form. [10 Marks] (b) Solve the following system of equations by Cramer's rule. $3 x+y+z=2 ; 2 x-4 y+3 z=-1 ; 4 x+y-3 z=-11$ [10 Marks]	20M	CO2

