Name:		1 • • •	
Enroln	ient No:	U U	PES
SAP II):	UNIVERSITY WITH	A PURPOSE
	UNIVERSITY OF PETROLEUM AND ENERGY STUD	ES	
_	End Semester Examination, December 2021	_	
0		nester : I	
		e : 3 Hrs x. Marks : 100	
	f page(s) : 2	A. Marky . 100	
	SECTION A		
	(Answer all the questions. Each question carries 4 marks	3)	
Q1	$ x^2 x 1 $		
	Find the integral value of x, if $\begin{vmatrix} x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix} = 28.$	4M	CO2
Q2	Determine the value of k for which the following function is continuous at x	= 3.	
_			
	$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3\\ k, & x = 3 \end{cases}$	4M	CO3
	(k , x = 3)		
Q3	Define Chain rule and using it, evaluate $\frac{dy}{dx}$ if $y = \sqrt{3x^2 + 4x - 1}$.	4M	CO3
Q4	If the probabilities of solving a problem by two students A and B are	$\frac{1}{-}$ and $\frac{1}{-}$	
	respectively then what is the probability of the problem to be solved.	² ³ 4M	CO4
Q5	Solve the equation $3x^2 = 15 - 4x$ by completing the square method.	4114	CO1
×۰		4M	CO1
	SECTION B (Answer all the questions. Each question carry 10 marks)		
Q6	The probabilities of X, Y and Z becoming managers are $\frac{4}{9}$, $\frac{2}{9}$, and $\frac{1}{3}$ respective	elv. The	
	probability that the bonus scheme will be introduced if X, Y and Z becomes n	nanagers	
	are $\frac{3}{10}$, $\frac{1}{2}$, and $\frac{4}{5}$ respectively.	10 M	
			CO4
	(i) What is the probability that bonus scheme will be introduced?		
	(ii) If the bonus scheme has been introduced, what is the probability	that the	
Q7	$\begin{array}{c c} manager appointed was X? \\ \hline [\cos x - \sin x \ 0] \end{array}$		
עי	If $A = \begin{vmatrix} \cos x & \sin x & 0 \\ \sin x & \cos x & 0 \end{vmatrix}$, prove that $A(adj A) = (adj A)A = A I_3$.	101/	
		10M	CO2
08	Evaluate $\int \frac{2x^2 - 9x - 35}{(x+1)(x-2)(x+3)} dx$ using the technique of partial fractions.		
Q8	\mathbf{F}_{-1}		

Q9	Determine the values of λ and μ such that the system $2x - 5y + 2z = 8$, $2x + 4y + 6z = 5$, $x + 2y + \lambda z = \mu$ has (i) no solution (ii) unique solution (iii) infinitely many solutions. Also, find the unique solution of the system. (OR) Solve the following homogeneous system for its non-trivial solutions (if any) x + 3y + 2z = 0, $2x - y + 3z = 0$, $3x - 5y + 4z = 0$, $x + 17y + 4z = 0$.	10M	CO2
	SECTION C		
	(Answer all the questions. Each question carries 20 marks)		
Q10	 (i) Find the maximum and minimum values of the function f(x) = x³ - 6x² + 9x + 1. (ii) Use logarithmic differentiation to find dy/dx if f(x) = (5 - 3x²)⁷ √6x² + 8x - 12. OR (i) Evaluate ∫ e^{ax} sin bx dx using Integration by parts technique. (ii) Define Implicit function. Evaluate dy/dx at x = 3 if 2y³ + 4x² - y = x⁶. 	20M	CO3
Q11	a) Define the Rank of a matrix. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ by reducing it into its normal form. (b) Solve the following system of equations by Cramer's rule. 3x + y + z = 2; 2x - 4y + 3z = -1; 4x + y - 3z = -11 [10 Marks]	20M	CO2