Name:

Enrolment No:

Semester: I

Time : 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Data Mining and Business Intelligence

Program: M.Tech. (Computer Science and Engineering)

Course Code: CSDA 7001

Instructions: Attempt all questions

SECTION A

S. No.		Mar ks	CO	
Q 1	Compare OLTP and OLAP.	4	CO1	
Q2	Write the following commands for HDFS:			
	a) Create a directory.	4	CO2	
	b) Copy a file from one folder to another			
Q3	Give the major tasks for data preprocessing.	4	CO3	
Q4	Name and describe the modules of Weka.	4	CO4	
Q5	Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14). If the stocks are affected by the same industry trends, explain the technique to decide will prices rise or fall together. Also, show the computation steps.			
	SECTION B			
Q 6	Discuss the techniques to handle missing and noisy data.	10	CO1	
Q 7	Explain the concept hierarchy generation for nominal data giving example	10	CO3	
Q 8	Explicate the various rules of association rule mining based on the dimensions of data involved in the rule set.	10	CO4	
Q 9	Write short notes on: a) Web analytics and web mining b) Hadoop architecture	10	CO4	
	SECTION-C			
Q10	For the following given transaction data set, generate rules using Apriori Algorithm. Consider the values of support=33% and Confidence=50%.	20	CO3	

1	Milk	Egg	Bread	Butter
2	Milk	Butter	Egg	Ketchup
3	Bread	Butter	Ketchup	
4	Milk	Bread	Butter	
5	Bread	Butter	Cookies	
6	Milk	Bread	Butter	Cookies
7	Milk	Cookies		
8	Milk	Bread	Butter	
9	Bread	Butter	Egg	Cookies
10	Milk	Butter	Bread	
11	Milk	Bread	Butter	
12	Milk	Bread	Cookies	Ketchup

OR

For the following medical diagnosis data, create decision tree:

Sore	Fever	Swollen	Congestion	Headache	Diagnosis
Throat		Glands	_		
Yes	Yes	Yes	Yes	Yes	Strep throat
No	No	No	Yes	Yes	Allergy
Yes	Yes	No	Yes	No	Cold
Yes	No	Yes	No	No	Strep throat
No	Yes	No	Yes	No	Cold
No	No	No	Yes	No	Allergy
No	No	Yes	No	No	Strep throat
Yes	No	No	Yes	Yes	Allergy
No	Yes	No	Yes	Yes	Cold
Yes	No	No	Yes	Yes	Cold

Q11	 a) Explain how the Naïve Bayes classification method is used for spam filtering. (10 marks) 		
	b) Find and explain the output of the following code:		
	import numpy as np		
	import pandas as pd		
	! wget -nv -O china_gdp.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/china_gdp.csv		
	df = pd.read_csv("china_gdp.csv")		
	def sigmoid(x, Beta_1, Beta_2): $y = 1 / (1 + np.exp(-Beta_1*(x-Beta_2)))$ return y	20	CO2
	$beta_1 = 0.10$		
	$beta_2 = 1990.0$		
	Y_pred = sigmoid(x_data, beta_1, beta_2)		
	plt.plot(x_data, Y_pred * 1500000000000.)		
	plt.plot(x_data, y_data, 'ro')		