Name: Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Statistical Modelling for Computer Sciences Program: M.Tech. (CSE) Course Code: CSEG7003 No. of printed pages: 4 Semester: I Time : 03 hrs. Max. Marks: 100

Instruc	tions: Attempt all the questions. Refer appendix for required distribution tables.		
	Section A (Scan and Upload) (5Q2	$\mathbf{x} \mathbf{4M} = 20$	Marks)
S. No.	(Scan and Oproad) (C. 2.	Marks	CO
Q1	Find the first four moments about the origin for a random variable X having density function $f(x) = \begin{cases} 2x(9-x^3)/18 & 0 \le x \le 5\\ 0 & otherwise \end{cases}$	[4]	CO3
Q2	A continuous random variable X has probability density given by $f(x) = \begin{cases} 5e^{-3x} & x > 0\\ 0 & x \le 0 \end{cases}$ Find (a) $E(X)$ (b) $E(X^2)$	[4]	C01
Q3	X is random variable such that $E(X) = 3$ and $E(X2) = 13$. Determine a lower bound for $P(-2 \le x \le 8)$, using Chebyshev 's inequality?	[4]	CO2
Q4	How do Markov Chains work and what is memorylessness property?	[4]	CO1
Q5	Explain the basic queueing process? Discuss the Kendall notation of queue.	[4]	CO5
	Section B (Scan and Upload) (4Qx	10M = 40	Marks)
Q6	Duracell manufactures batteries that the CEO claims will last an average of 300 hours under normal use. A researcher randomly selected 20 batteries from the production line and tested these batteries. The tested batteries had a mean life span of 270 hours with a standard deviation of 50 hours. Do we have enough evidence to suggest that the claim of an average lifetime of 300 hours is false? (Refer table as provided in Appendix)	[10]	CO2

Q7	A department store, A		-					
	to determine if the person same. A survey of 110 which one of the store significance level $\alpha =$		CO3					
	Store	A	B	C	D	E E		005
	Numberofshoppers		234	204	190	210		
	(Refer table as provide	ed in Apper	dix)					
Q8	Discuss the characteris of persuading a rando							
	You make 8 calls. Wh							
	The average playing the deviation is 5 minutes	[10]	CO3					
	a) What value is 1 st the mean? What v							
	b) Assuming the distrious of times are between							
Q9	A hospital switch boar What is the probability							
	(i) there are at the mo	[10]	CO2					
	(ii) there are exactly 3							
	- I × / ·			FION-C			1	L
			(Scan a	nd Upload)		(2Q)	$\mathbf{x} \ \mathbf{20M} = 40$	Marks)
Q10	A sports statistician cla open division champio 35 randomly selected hours. Assume the pop in Appendix) a) Identify the claim a b) Find the standardize c) Find the correspond d) At alpha = 0.05, de e) Interpret the decision	ons is at leas Boston Ma pulation star and state H_0 ed test statis ling P value cide whethe	st 2.68 hours. arathon worr adard deviation and H _a . stic z. e. er to reject or	The mean when's open doon is 0.32 how	vinning time livision chan ur. (Refer tab t the null hyp	of a sample of npions is 2.60 ble as provided	[20]	CO4
Q11	At Indian petrol pur average time of 5 n distributed with mean a) What would be the b) What would be the c) What is the averag d) What is the averag	np, custome ninutes bet time = 2 m e average qu e average nu ge time spen	ers arrive acc ween arrival inutes. On th ueue length? umber of cust it by a car in	cording to a s. The serv e basis of thi tomers in the the petrol pu	A Poisson pr rice time is is informatio e queuing sys ump?	exponentially n, find out	[20]	CO5

Punjab National Bank is considering opening a drive in window for customer	service.
Management estimates that customers will arrive at the rate of 15 per hour.	
whom it is considering to staff the window can service customers at the ra	
every three minutes.	
Assuming Poisson arrivals and exponential service find	
a) Average number in the waiting line.	
b) Average number in the system.	
c) Average waiting time in line.	
d) Average waiting time in the system.	

Appendix

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

	_									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379

	Upper-tail probability p													
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.000		
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.		
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.6		
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.9		
4 5	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61		
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86		
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40		
8 9	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.04		
0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78		
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58		
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43		
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31		
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22		
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14		
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07		

Percentage Points of the Chi-Square Distribution

Degrees of	Probability of a larger value of x ²										
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01		
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63		
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21		
2 3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34		
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28		
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09		
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81		
	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48		
7 8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09		
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67		
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.23		
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72		
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22		
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69		
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14		
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58		
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00		
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41		
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80		
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19		
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57		