	UNIVERSITY WITH A PURPOSE UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
Cours	End Semester Examination, December 2021 e: Engineering Mathematics Semes	stor. I		
Course: Engineering MathematicsSemesCourse Code: MATH 1036Ti				
	amme: B.Tech. (All SoCS Batches) Max. Ma			
Instan	ations. All questions are compulsory			
mstru	ctions: All questions are compulsory. SECTION A			
Each	Question will carry 4 Marks. (5Qx 4M	= 20 M	arks)	
			s COs	
Q 1	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and find its inverse.	4	CO1	
Q 2	Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$ where $\log u = (x^3 + y^3)/(3x + 4y)$.	4	CO2	
Q 3	Solve $(D - 2)^2 y = (e^x + \sin 2x)$.	4	CO3	
Q 4	A fair coin tossed twice. Let <i>X</i> be the number of heads that are observed. Construct the probability distribution of <i>X</i> .	4	CO4	
Q 5	Using Newton-Raphson method, find the real root of $xsinx + cosx = 0$ which is near $x = \pi$ correct to three decimal places.	4	CO5	
	SECTION B			
Each	question will carry 10 marks. (4Qx10M	= 40 M	larks)	
Q 6	If $y = a \cos(logx) + b \sin(logx)$, show that $x^2y_2 + xy_1 + y = 0$ and $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.	10	CO2	
Q 7	Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$.	10	CO3	
Q 8	The probability that a pen manufactured by a company will be defective is 1/10. If 12 such pens are manufactured, find the probability that a) at least two will be defective. b) none will be defective.	10	CO4	
Q 9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by dividing the interval of integration into 8 equal parts. Hence			
	find $\log_e 2$ approximately.			
	OR	10	C05	
		10		
	From the following table of half – yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46			
	different ages, estimate the premium for policies maturing at age 46.Age x : 4550556065			
	Premium y : 114.84 96.16 83.32 74.48 68.48.			
	SECTION-C		1	
Each	Question carries 20 Marks. (2Qx 20M	= 40 M	(arks)	
Q 10	a) Change the order of integration and hence evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dx dy$.			
	b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} dx dy dz$.			
	OR	20	0.00	
	2	20	CO2	
	a) Change the order of integration and hence evaluate $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dx dy}{\sqrt{y^4 - a^2 x^2}}$.			
	b) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dx dy dz.$			

Q 11	Use Runge – Kutta method of fourth order to find the numerical solution at		
	$x = 0.2$ for $\frac{dy}{dx} = x + y^2$, $y(0) = 1$. Assume step size $h = 0.1$.	20	CO5