	15 UPES UNIVERSITY WITH A PURPOSE		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021		
Cour	e: Engineering Mathematics Semester	ter: I	
Cour	e Code: MATH 1036	ime: 0	hrs.
Prog	amme: B.Tech. (All SoCS Batches) Max. Ma	arks:	
Instr	ions: All questions are compulsory.		
	SECTION A		
Each	Question will carry 4 Marks. ${ }^{\text {(5Qx 4M }}$	$=20 \mathrm{M}$	rks)
		Mark	COs
Q 1	Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and find its inverse.	4	CO1
Q 2	Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u$ where $\log u=\left(x^{3}+y^{3}\right) /(3 x+4 y)$.	4	CO2
Q 3	Solve $(D-2)^{2} y=\left(e^{x}+\sin 2 x\right)$.	4	CO3
Q 4	A fair coin tossed twice. Let X be the number of heads that are observed. Construct the probability distribution of X.	4	CO4
Q 5	Using Newton-Raphson method, find the real root of $x \sin x+\cos x=0$ which is near $x=\pi$ correct to three decimal places.	4	$\mathrm{CO5}$
	SECTION B		
Each	question will carry 10 marks. (4Qx10M	$=40 \mathrm{M}$	rks)
Q 6	If $y=a \cos (\log x)+b \sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$ and $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.	10	CO2
Q 7	Solve, by the method of variation of parameters, $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$	10	CO3
Q 8	The probability that a pen manufactured by a company will be defective is $1 / 10$. If 12 such pens are manufactured, find the probability that a) at least two will be defective. b) none will be defective.	10	CO4
Q 9	Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by dividing the interval of integration into 8 equal parts. Hence find $\log _{e} 2$ approximately.		
	OR	10	CO5
	From the following table of half - yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46 .		
	SECTION-C		
Each	Question carries 20 Marks. (2Qx 20M	$=40 \mathrm{~N}$	arks)
Q 10	a) Change the order of integration and hence evaluate $\int_{0}^{4 a} \int_{\mathrm{x}^{2} / 4 a}^{2 \sqrt{a x}} d x d y$. b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} d x d y d z$. OR a) Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\sqrt{a x}}^{a} \frac{y^{2} d x d y}{\sqrt{y^{4}-a^{2} x^{2}}}$. b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$.	20	CO2

Q 11	Use Runge - Kutta method of fourth order to find the numerical solution at $x=0.2$ for $\frac{d y}{d x}=x+y^{2}, y(0)=1$. Assume step size $h=0.1$.	$\mathbf{2 0}$	$\mathbf{C O 5}$

