Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End-Semester Examination, December 2021

Course: Unconventional Gas Resources

Semester: VII Program: APE (Gas) Time: 3 hrs

Course Code: CHGS3002P Max. Marks: 100

Instructions: The exam is closed book and closed notes. Use of unfair means will be severely dealt with.

ATTEMPT ALL QUESTIONS

SECTION A			
S. No.	SECTIONA	Marks	CO
1	What is the main distinction between Type 1 and Type 2 adsorption isotherms?	4	CO1
2	How are naturally fractured reservoirs modelled for applications in the industry?	4	CO2
3	What is the mathematical model used for Knudson diffusion?	4	CO2
4	State the important features of a tetrakaidecahedron cage.	4	CO4
5	Define triple point and calculate its degree of freedom for: a. A pure component b. A binary mixture	4	CO3
	SECTION B		
1	Derive the equation and state the technique used to calculate the different parameters of: a. The Langmuir adsorption isotherm b. The BET adsorption isotherm	10	CO3
2	Describe the pressure-temperature and pressure-composition diagram of the methane-water system	10	CO2
3	State and explain the primary difference of transport mechanism of natural gas in a micro-pore and in a naturally occurring fracture.	10	CO2
4	Derive the equation used for the purpose of calculating the density of gas hydrates.	10	CO4
	SECTION C	'	
1	Describe, in detail, the experimental technique used for construction of the adsorption isotherm of a coal sample	20	CO3
2	Make a detailed calculation of the amount (in Sm3) of natural gas that can be obtained from 1 kg of pure methane hydrate having a molecular weight of 17.6H kg/kg-mol, where H is the last digit of your roll number. Take the ideal gas constant to be equal to 8.314 J mol ⁻¹ K ⁻¹ .	20	CO4