

	Find (a) the eccentricity; (b) the altitude of perigee; (c) the semi major axis; and (d) the period.		
Q 4	(a) With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a circle of radius 15000 km to a coplanar ellipse with perigee altitude of 500 km and apogee radius of 22000 km . Calculate the magnitude of the required delta-v and the change in the flight path angle $\Delta \gamma$. (b) What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann transfer?	10	CO1
SECTION-C			
Q 1	A spacecraft is in a 300 km circular parking orbit. It is desired to increase the altitude to 600 km and change the inclination by 20°. Find the total delta-v required if (a) the plane change is made after insertion into the 600 km orbit (so that there are a total of three delta-v burns); (b) the plane change and insertion into the 600 km orbit are accomplished simultaneously (so that the total number of delta-v burns is two); (c) the plane change is made upon departing the lower orbit (so that the total number of delta-v burns is two).	20	$\mathrm{CO3}$
Q 2	Mars Orbiter Mission (MOM) is the cynosure of many of the technological breakthroughs achieved by Indian Space Research Organization (ISRO) in the Space domain. Explain the objectives of the mission, launch vehicle, scientific payloads, achievements, awards, and tracking locations. OR An earth satellite is in an 8000 km by 16000 km radius orbit (orbit 1 of Figure). Calculate the delta-v and the true anomaly θ_{1} required to obtain a 7000 km by 21000 km radius orbit (orbit 2) whose apse line is rotated 25° counterclockwise. Indicate the orientation φ of $\Delta \mathbf{v}$ to the local horizon.	20	CO 3

