Name: Enrolment No:		UPES SAP ID:		
Cou Prog Cou No. Not	```UNIVERSITY OF End se \\ : Operation Research \\ am: B.Tech (Mechanical) \\ e Code: MECH4008P \\ Pages: 02``` The paper consists of 3 sections A, B For Section A, type your answers in For Sections B and C, scan and uplo	OLEUM AND ENERGY STUDIES Examination, DEC, 2021 wser directly answers.	s:	
Section A (Attempt All of the following)				
Q1.	1. In the optimal simplex table $\mathrm{cj}-\mathrm{zj}$ (a) unbounded solution (c) alternative solution 2. The production manager will not recom (a) When large number of identical items (b) In case Low cost items are to be replace (c) For items that fail completely, (d) For Reparable items. 3. The slack variables indicate (a) Excess resource available, (b) Shortage (c) Nil resources, (d) Idle resource. 4. A variable which does not appear in the a.never equal to zero (c) called basic variable.	indicates (b) cycling (d) None of these oup replacement policy replaced, e record keeping is a problem, urce available, variable column of simplex table is (b) always equal to zero (d) None of these	4	CO1
Q2.	True or false a. Linear programming models have minimized. b. The graphical approach to the so efficient means of solving prob c. Slack variables are only associat d. Surplus variables are only assoc	jective function to be maximized but not f linear programming problems is a very maximization problems. th minimization problems.	4	CO1
Q3.	1. Define slack variables. 2. When is Big M method useful?		4	CO1

Q4.	1. The graphical method can only be used when there are \qquad decision variables. 2. The term \qquad implies that one or more variables in the solution and the profit can be infinitely large. 3. When the slope of the objective function is the same as the slope of one or more constraints, we may have 4. To find the optimal solution to an LP problem when using the graphical method, we must first identify the \qquad _.	4	CO1
Q5.	The matrix given below illustrates a game, where competitors A and B are assumed to be equal in ability and intelligence. A has a choice of strategy 1 or strategy 2 , while B can select strategy 3 or strategy 4. Find the value of the game.	4	CO 3
Section B(Attempt any four of the following)			
Q6.	In a departmental store one cashier is there to serve the customers. And the customers pick up their needs by themselves. The arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming Poisson arrival rate and exponential distribution for service rate, find: (a) Average number of customers in the system. (b) Average number of customers in the queue or average queue length. (c) Average time a customer spends in the system. (d) Average time a customer waits before being served.	10	CO 3
Q7	Solve by simplex method: $\operatorname{Max} z=3 x_{1}+5 x_{2}+4 x_{3}$ Subject to $\begin{aligned} & 2 \mathrm{x} 1+3 \mathrm{x} 2 \leq 8 \\ & 2 \times 2+5 \times 3 \leq 10 \\ & 3 \mathrm{x} 1+2 \times 2+4 \times 3 \leq 15 \\ & \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0 \end{aligned}$	10	CO2

	find the project completion time.	
Q11	A manufacturer of bags makes three types of bags P, Q and R which are processed on three machines M1, M2 and M3. Bag P requires 2 hours on machine M1 and 3 hours on machine M2 and 2 hours on machine M3. Bag Q requires 3 hours on machine M1, 2 hours on machine M2 and 2 hours on machine M3 and Bag R requires 5 hours on machine M2 and 4 hours on machine M3. There are 8 hours of time per day available on machine M1, 10 hours of time per day available on machine M2 and 15 hours of time per day available on machine M3. The profit gained from bag P is Rs 3.00 per unit, from bag Q is Rs 5.00 per unit and from bag R is Rs 4.00 per unit. What should be the daily production of each type of bag so that the products yield the maximum profit?	CO2

