


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Enhanced Oil Recovery Program: B.Tech APE Gas Course Code:PEAU4010 Semester: VII Time: 03 hrs. Max.Marks:100

	SECTION A (Scan and Upload) (50	Qx4M = 20	0Marks)
		Marks	COs
Q 1	List the different types of regular injection patterns and which is more preferable and why?	4M	CO1
Q 2	Explain the analysis of water flood after breakthrough with a neat diagram.	4M	CO2
Q 3	Illustrate the factors that affect areal displacement efficiency?	4M	CO2
Q 4	For a given steam injection rate, what are the field methods to reduce the heat loss from the well bore?	4M	CO3
Q 5	Describe the two principal types of polymers being used in polymer flooding for field applications.	4M	CO4
	SECTION B (Scan and Upload) (40	0x10M = 4	0Marks)
Q 1	For the linear reservoir system, calculate the following when the water saturation at the producing well reaches 0.56.Pore volume is 677000 bbl. a. reservoir water cut in bbl/bbl	ZAZVIVI	orvinis,
	b. surface water cut in STB/STB c. reservoir water-oil ratio in bbl/bbl		
	d. surface water-oil ratio in STB/STB	10M	CO1
	e. average water saturation in the swept area		
	f. pore volumes of water injected		
	g. cumulative water injected in bbl		

$B_o = 1.22 \text{ bbl/STB}, \ B_w = 1.55 \text{ bbl/STB}$ $\rho_o = 45 \text{ lb/ft}^3, \ \rho_w = 64.0 \text{ lb/ft}^3$ $\mu_w = 0.5 \text{ cp, Cross-sectional area A} = 25,200 \text{ ft}^2$ Perform the calculations for the following values of oil viscosity 5 cp. Document the results graphically and explain the effect of oil viscosity on fractional water cut.		
μ_w =0.5 cp, Cross-sectional area A = 25,200 ft ² Perform the calculations for the following values of oil viscosity 5 cp. Document the		
Perform the calculations for the following values of oil viscosity 5 cp. Document the		
results graphically and explain the effect of oil viscosity on fractional water cut.		
BELATIVE PERMEABILITY CURVE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	(15+5) 20M	CO2 & CO3
diameter and 40 cm length. The average condensation heat transfer coefficient on the		
tube is 12000 W/m ² K. The outside surface temperature of the pipe is maintained		
constant at 85°C. The enthalpy values for saturated steam and condensate are 2660 kJ/kg		
and 375 kJ/kg, respectively. Calculate the rate of steam condensation in kg/h.		
Q 2 a) Explain the zones in polymer flooding by a schematic cross section view of a polymer		
injection.		
b) Compare, at a water cut of 95 percent, the final oil recovery factors expected through	(10+5+5) 20M	CO4
conventional water injection and polymer water flooding. The reservoir properties are	_01.1	CO4
Shown in Table.		

Table: Properties of Reservoir				
Irreducible water saturation	0.20			
Relative permeability for water	0.18			
Relative permeability for oil	0.60			
Water viscosity	0.473 cp			
Oil viscosity	6.4 cp			
Permeability variation	0.5			
Formation volume factor for oil	1.05			
Resistance factor	6			
c) Explain the guidelines for polymer	application?			
	(Or)			
a) Explain how the microbial processes proceeding in MEOR can be classified according to the oil production problem in the field.b) Discuss the environmental risks associated with the implementation of EOR projects.			(10+10) 20M	CO