Name:

S. No.

Enrolment No:

Semester

Max. Marks: 100

Time

: V

Marks

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Nov-Dec 2021

Programme Name: B.Tech. Mechanical Engineering

Course Name : Instrumentation and Control

Course Code : ECEG3011

Nos. of page(s) : 03

Instructions: 1. Assume any missing data2. Section B has an internal choice in Q.9.3. Section C has an internal choice in Q.10.

SECTION A

(Answer in not more than 50 words)

5. 110.		Marks	CO
Q 1	Discuss the components of a closed-loop control system.	4	CO1
Q 2	Describe the methods for performing frequency response analysis of control systems.	4	CO4
Q 3	Describe any four static characteristics of a measurement instruments.	4	CO1
Q 4	Discuss the significance of dynamic characteristics of an instrument. Describe the methods to obtain these characteristics.	4	CO2
Q 5	Discuss the various methods for performing stability analysis of closed-loop control systems.	4	CO5
	SECTION B		
	(Answer in not more than 150 words)		
Q 6	Perform the mathematical modelling of a liquid flow system and hence obtain the transfer function and draw the block diagram.	10	CO2
Q 7	Discuss the various types of controllers that can be used in a feedback control system.	10	CO2
Q 8	Derive the transfer function of a first order system and hence find out its dynamic response to a periodic harmonic input.	10	CO3
Q 9	a) For the system with block diagram as in Fig. 1, $G = \frac{1}{10D^2 + 3D}$. If $K = 50$, $K_d = 1$, $K_i = 0.5$, find the steady state error when $r = 0$ and $b = 5$.	10	CO4

Fig. 1: Figure for Q. 9

	1		
	OR		
	b) For the system shown in Fig. 1, find the steady state error when r = 2 and b = 0.		
	SECTION-C		
Q 10	In the system of Fig. 2, the controlled variable is h_c , the level in the tank. Input motion ' z ' = $0.1h_r$, Port constant ' b ' of hydraulic servomotor = $400 \text{ cm}^2/\text{sec}$. Area $A = 25 \text{ cm}^2$. Area $A_T = 1.2 \text{ m}^2$, Inflow rate $q_{in} = Ky$, $K = 2.0 \text{ m/s}^2$. Mass density ' ρ ' of liquid = 1000 kg/m^3 . Fluid resistance ' R ' = 10000 Ns/m^5 . Reference input lever Fig. 2: Diagram for Q. 10 (first choice)	20	CO4
	Draw the block diagram for the above system and hence derive the transfer function.		
	OR (Internal Choice of Q. 10) Draw the closed-loop frequency response curve (polar plot) for the block diagram shown in Fig. 1. Take $K = 1$, $K_d = 0$, $K_i = 0$, and $G = \frac{1}{10D^2 + 3D}$. Ignore disturbance b(t).		
Q 11	A rectangular steel rod width b and depth d is supported at its ends and loaded at its centre by load W . If the length of the rod between the supports is l and y_c is the deflection at the centre, then $y_c = \frac{Wl^3}{4Ebd^3}$ where E is the modulus of elasticity of elasticity. Measurement give $b = 4.942 \pm 0.042 \ cm$ $d = 5.250 \pm 0.025 \ cm$ $l = 1.000 \pm 0.5 \ cm$ $y_c = 2.622 \pm 0.25\% \ of \ y_c \ mm$	20	CO2

W = 15000 N (exact)	
(a) Determine the nominal value of the modulus of elasticity.	
(b) Determine the percentage uncertainties in the various measured quantities.	
(c) Compute the percentage uncertainty in the modulus of elasticity.	