Name: Enrolment No:			
Course Course Progra	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 $\right]$ Semest	$\mathrm{r}: \mathrm{V}$ hrs. arks: 10	
SECTION A			
S. No.	Question Statement	Marks	CO
Q 1	Explain critical damping and give some examples where it is used.	4	CO1
Q 2	Differentiate between solid axle and independent suspension.	4	CO2
Q 3	Differentiate between radial-ply tires and bias-ply tires.	4	CO3
Q 4	Describe anti-lock braking system (ABS).	4	CO2
Q 5	Explain the Ackerman condition for low speed turning.	4	CO4
SECTION B			
Q 6	Determine the equivalent stiffness and mass matrix of the system shown in Figure when x, the displacement of disc measured from equilibrium is used as generalized coordinates. Assume the disk is thin and rolls without slip.	10	CO1
Q 7	Explain Anti-Dip and Anti-Squat suspension geometry.	10	CO2
	OR		

	Explain Anti-Roll suspension geometry.		
Q 8	Use the tire brush model to prove that for pure lateral slip, $=1-\theta_{y} \tan \alpha$.	10	CO 3
Q 9	Determine the pitch and bounce frequencies of an automobile with the following data, Mass $(m)=1000 \mathrm{~kg}$ Radius of gyration $(r)=0.9 \mathrm{~m}$ Distance between front axle and C.G. $=1.0 \mathrm{~m}$ Distance between rear axle and C.G. $=1.5 \mathrm{~m}$ Front spring stiffness $\left(k_{f}\right)=18 \mathrm{kN} / \mathrm{m}$ Rear spring stiffness $\left(k_{r}\right)=22 \mathrm{kN} / \mathrm{m}$	10	CO5
SECTION-C			
Q 10	For a rear-wheel-drive car pulling a trailer with the following characteristics: $l=2272 \mathrm{~mm}, w=1457 \mathrm{~mm}, h=230 \mathrm{~mm}, a_{1}=a_{2}, h_{1}=310 \mathrm{~mm}, b_{1}=680 \mathrm{~mm}, b_{2}=$ $610 \mathrm{~mm}, b_{3}=120 \mathrm{~mm}, h_{2}=560 \mathrm{~mm}, m=1500 \mathrm{~kg}, m_{t}=150 \mathrm{~kg}, \mu=1, \varphi=10 \mathrm{deg}, a=$ $1 \mathrm{~m} / \mathrm{s}^{2}$. Find the tire forces and the maximum angle of acceleration.	20	CO6
Q 11	Derive the equations of motion of a car taking a corner using bicycle model. Also, discuss the stability of the car with following specifications taking a corner at $10 \mathrm{~m} / \mathrm{s}$, Cornering stiffness of front tires $=500 \mathrm{~N} /$ deg Cornering stiffness of rear tires $=400 \mathrm{~N} / \mathrm{deg}$ Mass of the car $=900 \mathrm{~kg}$ Mass moment of inertia of yaw $=1128 \mathrm{kgm}^{2}$ Distance of CG from front wheel $=91 \mathrm{~cm}$ Distance of CG from rear wheel $=164 \mathrm{~cm}$ State whether the car is in understeer or oversteer condition.	20	CO4

