Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Vehicle Dynamics Course Code: MEAD3001 **Program: B.Tech-ADE**

Semester: V Time: 03 hrs. Max. Marks: 100

5. No.	Question Statement	Marks	CO
Q 1	Explain critical damping and give some examples where it is used.	4	CO1
Q 2	Differentiate between solid axle and independent suspension.	4	CO2
Q 3	Differentiate between radial-ply tires and bias-ply tires.	4	COS
Q 4	Describe anti-lock braking system (ABS).	4	CO2
2 5	Explain the Ackerman condition for low speed turning.	4	CO4
	SECTION B	1	
26	Determine the equivalent stiffness and mass matrix of the system shown in Figure when <i>x</i> , the displacement of disc measured from equilibrium is used as generalized coordinates. Assume the disk is thin and rolls without slip.	10	COI
Q 7	Explain Anti-Dip and Anti-Squat suspension geometry.	10	CO2
	OR		

SECTION A

	Explain Anti-Roll suspension geometry.		
Q 8	Use the tire brush model to prove that for pure lateral slip, $= 1 - \theta_y \tan \alpha$.	10	CO3
Q 9	Determine the pitch and bounce frequencies of an automobile with the following data, Mass $(m) = 1000 \text{ kg}$ Radius of gyration $(r) = 0.9 \text{ m}$ Distance between front axle and C.G. = 1.0 m Distance between rear axle and C.G. = 1.5 m Front spring stiffness $(k_f) = 18 \text{ kN/m}$ Rear spring stiffness $(k_r) = 22 \text{ kN/m}$	10	CO5
	SECTION-C		
Q 10	For a rear-wheel-drive car pulling a trailer with the following characteristics: $l = 2272$ mm, $w = 1457$ mm, $h = 230$ mm, $a_1 = a_2$, $h_1 = 310$ mm, $b_1 = 680$ mm, $b_2 = 610$ mm, $b_3 = 120$ mm, $h_2 = 560$ mm, $m = 1500$ kg, $m_1 = 150$ kg, $\mu = 1$, $\varphi = 10$ deg, $a = 1$ m/s ² . Find the tire forces and the maximum angle of acceleration.	20	CO6
Q 11	Derive the equations of motion of a car taking a corner using bicycle model. Also, discuss the stability of the car with following specifications taking a corner at 10 m/s, Cornering stiffness of front tires = 500 N/deg Cornering stiffness of rear tires = 400 N/deg Mass of the car = 900 kg Mass moment of inertia of yaw = 1128 kgm ² Distance of CG from front wheel = 91 cm Distance of CG from rear wheel = 164 cm State whether the car is in understeer or oversteer condition.	20	CO4