UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Physical Chemistry V
Program: B.Sc. (Hons.) Chemistry
Course Code: CHEM 3002
Instructions: Read the instructions given below carefully:

1. All questions are compulsory.
2. Internal choice is given in question 4 of Section B and question 2 of section C.

SECTION A (Scan and upload)			
S. No.		Marks	CO
Q 1	What is the speed of an electron whose de Broglie wavelength is 0.1 nm ?	4	CO1
Q 2	Explain the terms: Bathochromic, Hypsochromic, Hyperchromic and Hypochromic shift.	4	$\mathrm{CO3}$
Q 3	For determining NMR, how many kinds of proton are there in the following compounds: a) $\mathrm{CH}_{3} \mathrm{CH}_{3}$ b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	4	CO 2
Q 4	A cricket ball weighing 100 g is to be located within $0.1 \mathrm{~A}^{\circ}$. What is the uncertainty in its velocity? Comment on your result. Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ and Plank's constant $=6.626 \times 10^{-34} \mathrm{Js}$	4	CO1
Q 5	Discuss Born-Oppenheimer approximation.	4	CO1

SECTION B
 (Scan and upload)

Q1	Show that the average value of $1 / \mathrm{r}$ for an electron in the 1 s -orbital of hydrogen atom is $1 / \mathrm{a}_{0}$, where a_{0} is the Bohr radius; given that $\Psi=\frac{1}{\sqrt{\pi} a_{o}^{3 / 2}} e^{-r / a_{o}}$	$\mathbf{1 0}$	$\mathbf{C O 2}$
Q2	What are the main points of similarities and differences between VBT and MOT?	$\mathbf{1 0}$	$\mathbf{C O 2}$
Q3	Write the Schrodinger wave equation for a Simple Harmonic Oscillator explaining its potential energy curve.	$\mathbf{1 0}$	$\mathbf{C O 1}$

Q 4	List all the electronic transitions possible for a) CH_{4} b) $\mathrm{CH}_{3} \mathrm{Cl}$ c) $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$ OR Discuss in detail, how Stokes and Anti-Stokes lines appear in Raman spectroscopy. What is Raman shift?	10	CO 3
SECTION-C (Scan and upload)			
Q 1	(a) An electron is confined to move in a one-dimensional box of 1 nm length. Calculate the probability of finding it in between $x=0$ and $x=0.2 \mathrm{~nm}$. (Given $\sin 0.4 \pi=0.9511)$ (b) Apply quantum mechanical principles to calculate the coefficients of atomic orbitals in sp^{2} hybrid orbitals and write their wave functions.	20	CO 2
Q 2	(a) Using the energy level expression and the selection rules, draw an energy level diagram and the spectral transitions for the microwave (pure rotational) spectrum of a rigid diatomic rotator. Also derive the expression for wavenumber (in cm^{-1}) for P -Branch of spectra. OR With the help of a schematic diagram, explain briefly the Shielding and Deshielding of Protons in NMR studies. (b) A sample was excited by the $4358 \mathrm{~A}^{0}$ line of mercury. A Raman line was observed at $4447 \mathrm{~A}^{0}$. Calculate the Raman shift in cm^{-1}. At what wavelength in A^{0} would the anti-stokes line appear in the Raman spectrum of the sample. OR The pure rotational spectrum of gaseous HCl contains a series of equally spaced lines separated by $20.80 \mathrm{~cm}-1$. Calculate the internuclear distance of the molecule. The atomic masses of H and Cl are $1.673 \times 10^{-27} \mathrm{~kg}$ and 58.06 x $10^{-27} \mathrm{~kg}$ respectively.	20	CO 3

