

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Semester: V

Duration: 03 hrs.

Max. Marks: 100

Course: Physical Chemistry V

Program: B.Sc. (Hons.) Chemistry

Course Code: CHEM 3002

Instructions: Read the instructions given below carefully:

1. All questions are compulsory.

2. Internal choice is given in question 4 of Section B and question 2 of section C.

SECTION A

(Scan and upload)				
S. No.		Marks	СО	
Q 1	What is the speed of an electron whose de Broglie wavelength is 0.1 nm?	4	CO1	
Q 2	Explain the terms: Bathochromic, Hypsochromic, Hyperchromic and Hypochromic shift.	4	CO3	
Q 3	For determining NMR, how many kinds of proton are there in the following compounds: a) CH ₃ CH ₃ b) CH ₃ CH ₂ CH ₃ c) (CH ₃) ₂ CHCH ₂ CH ₃ d) C ₆ H ₅ CH ₃	4	CO2	
Q 4	A cricket ball weighing 100 g is to be located within 0.1 A°. What is the uncertainty in its velocity? Comment on your result. Mass of electron = 9.1×10^{-31} kg and Plank's constant = 6.626×10^{-34} Js	4	CO1	
Q 5	Discuss Born-Oppenheimer approximation.	4	CO1	
SECTION B (Scan and upload)				
Q 1	Show that the average value of 1/r for an electron in the 1s-orbital of hydrogen atom is 1/a _o , where a _o is the Bohr radius; given that $\Psi = \frac{1}{\sqrt{\pi}a_o^{3/2}}e^{-r/a_o}$	10	CO2	
Q 2	What are the main points of similarities and differences between VBT and MOT?	10	CO2	
Q 3	Write the Schrodinger wave equation for a Simple Harmonic Oscillator explaining its potential energy curve.	10	CO1	

Q 4	List all the electronic transitions possible for		
	a) CH ₄		
	b) CH ₃ Cl		
	$H_2C=O$	10	CO3
	OR		
	Discuss in detail, how Stokes and Anti-Stokes lines appear in Raman spectroscopy. What is Raman shift?		
	SECTION-C (Scan and upload)		
Q 1	 (a) An electron is confined to move in a one-dimensional box of 1 nm length. Calculate the probability of finding it in between x = 0 and x = 0.2 nm. (Given sin 0.4π = 0.9511) (b) Apply quantum mechanical principles to calculate the coefficients of atomic 	20	CO2
Q 2	orbitals in sp² hybrid orbitals and write their wave functions.(a) Using the energy level expression and the selection rules, draw an energy level		
Q 2	diagram and the spectral transitions for the microwave (pure rotational) spectrum of a rigid diatomic rotator. Also derive the expression for wavenumber (in cm ⁻¹) for P-Branch of spectra.		
	OR		
	With the help of a schematic diagram, explain briefly the Shielding and Deshielding of Protons in NMR studies.		
		20	CO3
	(b) A sample was excited by the 4358 A ⁰ line of mercury. A Raman line was observed at 4447 A ⁰ . Calculate the Raman shift in cm ⁻¹ . At what wavelength in A ⁰ would the anti-stokes line appear in the Raman spectrum of the sample. OR		
	The pure rotational spectrum of gaseous HCl contains a series of equally spaced lines separated by 20.80 cm-1. Calculate the internuclear distance of the molecule. The atomic masses of H and Cl are 1.673×10^{-27} kg and 58.06×10^{-27} kg respectively.		