Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 Course: Theory of Machines (MECH 3019) Semester: V Program: B. Tech (Mechatronics) Time: 3 Hours Max. Marks: 100			
SECTION A			
S. No.		Marks	CO
Q-1	Distinguish between a chain structure and a mechanism.	4	CO1
Q-2	Explain briefly the differences between simple, compound and epicyclic gear trains.	4	CO1
Q-3	Why is balancing necessary for rotors of high speed engines? Write a short note on static and dynamic unbalance in machinery.	4	CO1
Q-4	What is instantaneous centre of rotation? Show all the Instantaneous centre of a four bar mechanism.	4	CO1
Q-5	What do you mean by gyroscopic couple? write a relation for its magnitude.	4	CO1
SECTION B			
Q-6	Determine the number of degrees of freedom of the mechanism shown in Figures below.	10	CO 2
Q-7	In the slider crnk mechanism as shown, the crank 2 makes 80 rpm in clockwise direction. Determine the linear velocity of slider and angular velocity of connecting rod 3. Also find out the linear linear velocity of point Q on connecting rod. Lengths of crank and connecting rod are 8 cm and 32 cm respectively.	10	CO 2

Q-8	A pair of 20 degree involute spur gear having 30 and 50 teeth respectively of module 4 mm are in mesh, the smaller gear rotates at 1000 rpm . Determine a) Sliding velocities at engagement and disengagement of a pair of teeth and b) The contact ratio, take addendum $=1$ module. OR Determine the minimum number of teeth required on a pinion, in order toavoid interference which is to gear with, 1. a wheel to give a gear ratio of 3 to 1 ; and 2. an equal wheel. The pressure angle is 20° and a standard addendum of 1 module for the wheel may be assumed.	10	CO 3
Q-9	Four masses $150 \mathrm{~kg}, 250 \mathrm{~kg}, 200 \mathrm{~kg}$ and 300 kg are rotating in the same plane at radii of $0.25 \mathrm{~m}, 0.2 \mathrm{~m}, 0.3 \mathrm{~m}$, and 0.35 m respectively. Their angular location is $40^{\circ}, 120^{\circ}$, and 250° from mass 150 kg , respectively measured in counter-clockwise direction. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.25 m .	10	CO4
	SECTION C		
Q-10	The pitch circle diameter of the annular gear in the epicyclic gear train shown in figure is 425 mm and the module is 5 mm . when the annular gear 3 is stationary, the spindle A makes one revolution in the same sense as the sun gear 1 for every 6 revolutions of the driving spindle carrying the sun gear. All the planet gears are of same size. Determine the number of teeth on all the gears	20	CO3

	OR In an epicyclic gear train, the internal wheels A and B and compound wheels C and D rotate independently about axis O . The wheels E and F rotate on pins fixed to the arm G. E gears with A and C and F gears with B and D . All the wheels have the same module and the number of teeth are : $\mathrm{TC}=28 ; \mathrm{TD}=26 ; \mathrm{TE}=\mathrm{TF}=18$. a) Find the number of teeth on A and B ; b) If the arm G makes 100 r.p.m. clockwise and A is fixed, find the speed of B; and c) If the arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. counter clockwise ; find the speed of wheel B.		
Q-11	A disc cam with base circle radius of 50 mm is operating a roller follower with SHM. The lift is 25 mm , angle of ascent 120°, dwell 90°, return 90°, and dwell during the remaining period. The roller radius is 10 mm . Draw the cam profile when the line of reciprocation of follower passes through the cam axis.	20	CO4

