Name:		5		
Enrolm	nrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
-	End Semester Examination, December 2021			
Programme Name: B.Tech. Mechatronics EngineeringSemesterCourse Name: Robotics and ControlTime			r : V : 03 hrs.	
Course		e : 03 x. Marks : 10		
	page(s) : 02	x, wiai ks , iv	U	
	tions: 1. Assume any missing data			
	e is an internal choice in Section B in Q.8 and an internal choice in Section C in	Q.10.		
	SECTION A (Answer in not more than 50 words)			
S. No.	(Answer in not more than 50 words)	Marks	СО	
Q 1	Describe the various robot characteristics.	4	C01	
Q 2	Differentiate between forward and inverse kinematics.	4	CO2	
Q 3	The forward kinematics of robots based on DH representation depends upon the ho position. Comment.		CO2	
Q 4	Compare among the four fundamental robot arms giving at least one advantage <i>a</i> one disadvantage of each.	nd 4	C01	
Q 5	Differentiate between path and trajectory. Describe various types of trajectories.	4	CO3	
	SECTION B			
	(Answer in not more than 150 words)			
Q 6	A special 3-DOF spraying robot has been designed as shown in Fig. 1. Assign			
	coordinate frames based on the D-H representation and fill out the parameters table x_{H} f_{1} f_{2} y_{U} f_{1} z_{U} z_{U} f_{1} Fig.1: A 3-DOF spraying robot	10	CO2	
0.7	Suppose that a robot is made of a Cartesian and Euler combination of joints. Find	the		
Q 7				

$T = \begin{bmatrix} 0.780 & -0.373 & 0.716 & 0\\ 0.627 & 0.927 & -0.174 & 0\\ -0.509 & 0.533 & 0.854 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$		
 A point P in space is defined as P = (2,3,5)^T. Apply the following transformations and find the new position of point P. (i) Rotate 90° about x-axis, then (ii) Rotate 90° about local a-axis, then (iii) Translate 3 units about y-, 6 units about z-, and 5 units about x-axes. OR Determine the inverse kinematics equations for a two-degree of freedom planar manipulator having two revolute joints.	10	CO2
It is desired to have the first joint of a six-axis robot to move from the initial position, $\theta_0 = 15^\circ$, to a final position, $\theta_f = 75^\circ$, in 3 seconds using a cubic polynomial. Determine the trajectory.	10	CO3
SECTION-C		I
 (PPI) control strategy. Develop the block diagram and mathematical model for PPI controller. OR Analyze a robotic joint with the help of an appropriate SISO model. 	20	CO4
For a 4-DOF, RPPR manipulator, the joint-link transformation matrices, with joint variables θ_1 , d_2 , d_3 , and θ_4 are ${}^{0}T_1 = \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}T_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{2}T_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix};$ ${}^{3}T_4 = \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ S_4 & C_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ If the tool configuration matrix at a given instant is as given below, obtain the	20	CO2
	A point P in space is defined as $P = (2,3,5)^T$. Apply the following transformations and find the new position of point P. (i) Rotate 90° about x-axis, then (ii) Rotate 90° about local a-axis, then (iii) Translate 3 units about y-, 6 units about z-, and 5 units about x-axes. OR Determine the inverse kinematics equations for a two-degree of freedom planar manipulator having two revolute joints. It is desired to have the first joint of a six-axis robot to move from the initial position, $\theta_0 = 15^\circ$, to a final position, $\theta_t = 75^\circ$, in 3 seconds using a cubic polynomial. Determine the trajectory. SECTION-C For a robotic controller it is proposed to implement partitioned proportional integral (PPI) control strategy. Develop the block diagram and mathematical model for PPI controller. OR Analyze a robotic joint with the help of an appropriate SISO model. For a 4-DOF, RPPR manipulator, the joint-link transformation matrices, with joint variables $\theta_1, d_2, d_3, and \theta_4$ are ${}^0T_1 = \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^1T_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^2T_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix};$ ${}^3T_4 = \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ S_4 & C_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	A point P in space is defined as $P = (2,3,5)^T$. Apply the following transformations and find the new position of point P.(i)Rotate 90° about x-axis, then (ii)Rotate 90° about local a-axis, then (iii)10(iii)Translate 3 units about y-, 6 units about z-, and 5 units about x-axes.10ORDetermine the inverse kinematics equations for a two-degree of freedom planar manipulator having two revolute joints.10It is desired to have the first joint of a six-axis robot to move from the initial position, $\theta_0 = 15^\circ$, to a final position, $\theta_f = 75^\circ$, in 3 seconds using a cubic polynomial. Determine the trajectory.10SECTION-C20ORAnalyze a robotic joint with the help of an appropriate SISO model.For a 4-DOF, RPPR manipulator, the joint-link transformation matrices, with joint variables $\theta_1, d_2, d_3, and \theta_4 are0^*T_i = \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{-1}T_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{-2}T_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{-1}T_2 = \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ S_4 & C_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{-2}T_3 = \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}20$