Name: Enrolment No:			
Progra Course Cours Nos. of Instru 2. The	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 $\right)$ Semest	$\begin{aligned} & \text { r } \quad \text { : V } \\ &: 03 \\ & \text { larks }: 1 \end{aligned}$	
SECTION A(Answer in not more than 50 words)			
S. No.		Marks	CO
Q 1	Describe the various robot characteristics.	4	CO1
Q 2	Differentiate between forward and inverse kinematics.	4	CO2
Q 3	The forward kinematics of robots based on DH representation depends upon the home position. Comment.	4	CO2
Q 4	Compare among the four fundamental robot arms giving at least one advantage and one disadvantage of each.	4	CO1
Q 5	Differentiate between path and trajectory. Describe various types of trajectories.	4	CO3
SECTION B(Answer in not more than 150 words)			
Q 6	A special 3-DOF spraying robot has been designed as shown in Fig. 1. Assign the coordinate frames based on the D-H representation and fill out the parameters table. Fig.1: A 3-DOF spraying robot	10	CO2
Q 7	Suppose that a robot is made of a Cartesian and Euler combination of joints. Find the necessary Euler angles to achieve the following:	10	CO4

	$T=\left[\begin{array}{cccc}0.780 & -0.373 & 0.716 & 0 \\ 0.627 & 0.927 & -0.174 & 0 \\ -0.509 & 0.533 & 0.854 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$		
Q 8	A point P in space is defined as $\mathrm{P}=(2,3,5)^{\mathrm{T}}$. Apply the following transformations and find the new position of point P . (i) Rotate 90° about x-axis, then (ii) Rotate 90° about local a-axis, then (iii) Translate 3 units about y -, 6 units about z -, and 5 units about x -axes. OR Determine the inverse kinematics equations for a two-degree of freedom planar manipulator having two revolute joints.	10	CO2
Q 9	It is desired to have the first joint of a six-axis robot to move from the initial position, $\theta_{0}=15^{\circ}$, to a final position, $\theta_{\mathrm{f}}=75^{\circ}$, in 3 seconds using a cubic polynomial. Determine the trajectory.	10	CO3
	SECTION-C		
Q 10	For a robotic controller it is proposed to implement partitioned proportional integral (PPI) control strategy. Develop the block diagram and mathematical model for PPI controller. OR Analyze a robotic joint with the help of an appropriate SISO model.	20	CO4
Q 11	For a 4-DOF, RPPR manipulator, the joint-link transformation matrices, with joint variables $\theta_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$, and θ_{4} are $\begin{aligned} & { }^{0} \boldsymbol{T}_{1}=\left[\begin{array}{cccc} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] ;{ }^{1} \boldsymbol{T}_{2}=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{array}\right] ;{ }^{2} \boldsymbol{T}_{3}=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{array}\right] ; \\ & { }^{3} \boldsymbol{T}_{4}=\left[\begin{array}{cccc} C_{4} & -S_{4} & 0 & 0 \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}$ If the tool configuration matrix at a given instant is as given below, obtain the magnitude of each joint variable. $\boldsymbol{T}_{E}=\left[\begin{array}{cccc} -0.250 & 0.433 & -0.866 & -89.10 \\ 0.433 & -0.750 & -0.500 & -45.67 \\ -0.866 & -0.500 & 0.000 & 50.00 \\ 0 & 0 & 0 & 1 \end{array}\right]$	20	CO2

