

Namo Enro	Iment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY	STUDII	ES
	End Semester Examination, December 2021		
Prog	ramme Name: B.Tech. Mechatronics & ADE Semeste		V
Cour	rse Name : Design of Machine Elements Time:	04 hrs	
Max	. Marks: 100		
Cour	rse Code : MECH 3001		
	of page(s) : 3		
	ructions: Read the questions carefully and attempt as per section. Use of De	esign Data h	andbook is
allow	ved. Assume suitable data if required/missing.		
Atto	SECTION A (30) mpt all questions.		
S.	Statement of Problem		
No.		Marks	CO
Q 1	Design a longitudinal riveted joint for boiler shell the following data;	20	
	Diameter of boiler shell = $(1800 + 100 \text{ xA})\text{mm}$		
	Maximum internal pressure = 2.0 N/mm^2		
	Strength of plate in tension = 84 MPa		
	Crushing strength of plate = 130 MPa		
	Shearing strength of rivet $= 70$ MPa		
	Assume the relevant data from DDHB.		
	Select a suitable riveted joint to be designed. Suggest the diagra	am	CO3
	for designed joint.		005
	A is last two digits of your roll no.		
	OR		
	A rigid coupling transmits 35 kW at 180 rpm. The service factor for t	he 20	
	application is 1.5 (take design torque as 1.5 times the mean torque). Select t	he	
	suitable material for the various parts of the coupling. Take the material		
	shaft as 40C8 (σ y= 380 MPa), material for bolts is 30C8 (400 MPa) a	nd	
	flanges are made up of cast iron FG 150 (σ ut =150 MPa). Take factor of safe	ety	
	as 2.5 for all components. Also draw neat sketch of the coupling.		
	SECTION B (60)		
Atte	mpt all questions. There is internal choice in Q. No. 4 &.		
Q 2	(i) Design a line shaft transmitting power to two machine tools. T		
	power received by the shaft is $(30+A)$ kW at 1000 rpm. The diame		
	of pulley P_1 is 300 mm and its mass is 40 kg. The diameter and ma		
	of pulley P_2 is 600 mm and 100 kg respectively. Assume the b		CO2/CO4
	tension ratio of 2.5 for both pulleys, design the shaft as per ASN	1E	
	code.		

