Name:

Enrolment No:

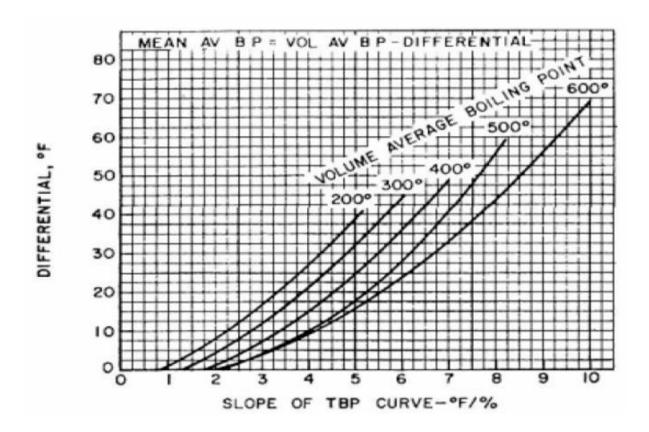
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

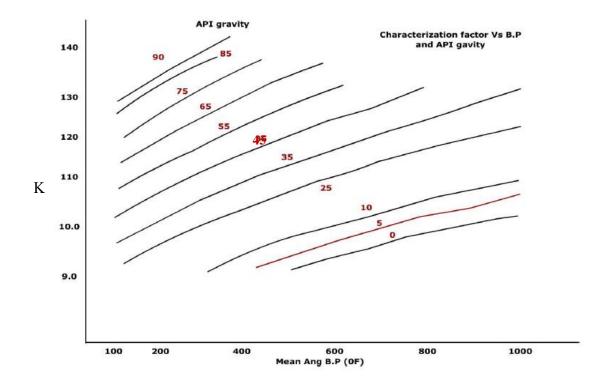
End Semester Examination, December 2021

Course: Petroleum Refining & Petrochemical Technology

Semester: V Program: B.Tech (APE Gas) Time 03 hrs.

Course Code: CHGS 3013P Max. Marks: 100


Instructions: In case of data missing make necessary assumptions


Note: The graphical data is provided in Page No. 2 & 3 to solve problem no. 10


The table 1 is provided in page 4 to solve problem no. 9

S. No.	SECTION A (5X4=20) (Attempt all qu	estions)	Marks	CO
Q 1	What is the difference between ASTM and TBP distillation and give their significance?			4 M	CO1
Q 2	Explain and give the significance	e of octane number and c	etane number?	4 M	CO2
Q 3	List the various types of reflux conditions? Which reflux condition is the best for Indian industries and also mention the merits of the pump around reflux over the top reflux?			4 M	CO3
Q 4	What is hydrocracking and wh hydrocracking?	at are the various proc	ess variables affecting	4 M	CO4
Q 5	What is coking? what are the types of coking operations?				CO4
S. No.	SECTION B (4X10=40) (Attempt all questions)				CO
Q 6	(a) What is delayed coking and show it with a schematic representation(b) what are the various coke types and characteristics of delayed coking process?				CO5
Q 7	(a) What is visbreaking and what are the types of visbreaking operations?(b) Explain the reactions involved in visbreaking and the differences between the various visbreakers?				CO4
Q 8	Explain the catalytic reforming p a) Objective b) Feedstock c) Conditions	0 0	owing points or Reactions e) Process	10 M	CO4
Q 9	 (a) Calculate the RVP of a blend and FCC gasoline. The compone given below Properties of the components are given in Table 1. (b) Determine the amount of new components are given in Table 1. 	Component LSR gasoline HSR gasoline Reformate 94 RON FCC gasoline	rel per day (BPD) are Quantity (BPD) 5000 4000 6000 7000	(5+5) M	CO5

SECTION C (2X20=40M) (Attempt all questions)									
Q 10	Whole crude TBP data (API gravity 25)								
	Vol. %	0	10	30	50	70	90		
	T (°F)	160	220	350	415	460	530		
	point (ii) For t	 (i) Plot the TBP and determine the UOP characterization factor, average boiling point (VABP, MEABP), and weight for the crude oil. (ii) For the TBP range of 220-500 °F, calculate API, M.W, Mid vol.%, Mid boiling point, and Wt based on 500 barrels of whole crude. 						20 M	CO2
Q 11	With a neat flow diagram, explain the process of Flexi coking. Also, write the merits and demerits of Flexi coking over the other two coking processes.					20 M	CO4		

Table 1: Typical properties for gasoline blending components

Component	RVP (psi)	MON	RON	API
iC ₄	71.0	92.0	93.0	
nC_4	52.0	92.0	93.0	
iC ₅	19.4	90.8	93.2	
nC ₅	14.7	72.4	71.5	
iC ₆	6.4	78.4	79.2	
LSR gasoline	11.1	61.6	66.4	78.6
HSR gasoline	1.0	58.7	62.3	48.2
Light hydrocracker gasoline	12.9	82.4	82.8	79.0
Heavy hydrocracker gasoline	1.1	67.3	67.6	49.0
Coker gasoline	3.6	60.2	67.2	57.2
FCC Light gasoline	1.4	77.1	92.1	49.5
FCC gasoline	13.9	80.9	83.2	51.5
Reformate 94 RON	2.8	84.4	94.0	45.8
Reformate 98 RON	2.2	86.5	98.0	43.1
Alkylate C ₃	5.7	87.3	90.8	
Alkylate C ₄	4.6	95.9	97.3	70.3
Alkylate C ₅	1.0	88.8	89.7	