Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021			
Course: Artificial Lift Technology Semester: V Programme: B.Tech APE UP Course Code: PEAU3023			
Time: 03 hrs. Instructions: All questions are compulsory. There is no overall choice. However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.			
SECTION A			
S. No.		Mark	CO
1	Differentiate between artificial lift and natural lift.	4	CO1
2	Illustrate the process to determine AOF from the IPR.	4	CO1
3	Define the aim of Artificial Lift Systems.	4	CO1
4	Diagrammatically describe the gas lift system.	4	CO3
5	a) For Gas Lift Wells depth is not a limitation. (T/F) b) Deeper gas injection depths can be achieved by using valves for wells with fixed surface injection pressures. (T/F) c) Continuous gas lift can be seen as an extension of the self-flow period of oil well. (T/F) d) Low gravity crude oil can't be produced by gas lift. (T/F)	4	$\mathrm{CO3}$
SECTION B			
6	Discuss the procedure for selection of ESP.	10	CO 3
7	Describe the working of PCP.	10	CO4
8	Illustrate the Overview of the Techniques for Selecting Optimal Artificial Lift Methods. OR Describe the primary, secondary and tertiary recovery phase of an oil field.	10	CO1
9	Enumerate the general Factors Effecting SRP Selection	10	CO 2
SECTION C			
10	With the help of diagram describe the unloading sequence. OR The following geometry dimensions are for the pumping unit C-320D-256-120: $\begin{aligned} & \mathrm{d} 1=111: 07 \mathrm{in} . \\ & \mathrm{d} 2=155 \mathrm{in} . \\ & \mathrm{c}=42 \mathrm{in} . \\ & \mathrm{h}=132 \mathrm{in} . \end{aligned}$ Can this unit be used with a $21 / 2$-in. plunger and $3 / 4,78$, 1 -in. tapered rod string to lift 22 API gravity crude (formation volume factor $1.22 \mathrm{rb} / \mathrm{stb}$) at a depth of $3,000 \mathrm{ft}$? If yes, what is the required counter-balance load?	20	$\mathrm{CO3}$

11	The following geometric dimensions are for the pumping unit C-320D-213-86: $\begin{aligned} & \mathrm{d} 1=96.05 \mathrm{in} . \\ & \mathrm{d} 2=111 \mathrm{in} . \\ & \mathrm{c}=37 \mathrm{in} . \\ & \mathrm{c} / \mathrm{h}=0.33 . \end{aligned}$ If this unit is used with a $21 / 2$-in. plunger and $78-\mathrm{in}$. rods to lift 258 API gravity crude (formation volume factor $1.2 \mathrm{rb} / \mathrm{stb}$) at depth of $3,000 \mathrm{ft}$, determine a) The maximum allowable pumping speed if $\mathrm{L}=0.4$ is used. b) Expected maximum polished rod load. c) Expected peak torque. d) Desired counterbalance weight to be placed at the maximum position on the crank.	20	CO3

