Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021

Course: Corrosion Engineering Program: B. Tech (APE-Gas) Course Code: CHCE 3025P

Semester: V Time 03 hrs. Max. Marks: 100

SECTION A Answer all the Questions			
S. No.	Answer an the Questions	Marks	CO
Q 1	Explain about the following with neat diagrama. Fretting and cavitation Corrosionb. Area effect in Galvanic Corrosion	5+5	CO1
Q 2	List out various methods used to prevent corrosion. Mention various design rules to prevent from corrosion	10	CO3
Q 3	a. Derive the expression for Nernst equationb. Mention the advantages and limitations of Pourbaix diagram	5+5	CO2
Q 4	List out various types of electrochemical polarization. Illustrate, and discuss any two of them.	5+5	CO3
Q 5	 a. An engineer is designing a head for a nine-iron golf club. The part requires a high impact strength and resistance to distortion. What types of steel should the engineer consider for this application? Justify b. An engineer is designing a sheet metal frame for a small business machine. What mechanical properties would be important for this material? What materials should the engineer consider for this application? Justify 	5+5	C05
Q 6	Analyze and evaluate the prevention of corrosion damage with neat diagrams	10	CO4
	SECTION B		
Q 7	 Answer all the Questions a. Calculate the theoretical tendency of Nickel to corrode (in volts) with evolution of hydrogen when immersed in 0.02 M NiCl₂ acidified to pH=6. Cell Reaction: Ni→Ni²⁺ + 2e (anode) H₂→ 2H⁺ + 2e (Cathode) Ni + 2H⁺→Ni²⁺ + H₂ (overall) e°_{Ni/Ni2+} = 0.25 b. Calculate the theoretical tendency of cobalt to corrode (in volts) in deaerated water of pH=5, 6, 7, and 8. Assume corrosion products are hydrogen and Co(OH)₂. The solubility product: K ^{Co(OH)2} = [Co⁺²][OH⁻]² = 1.6 X 10⁻¹⁷. Cell notation: Co/Co⁺² //H⁺/H₂. 	7+13	CO2
Q 8	Instruction: Assume suitable values if any data is missingList out various alloy systems. Describe carbon and low alloy steels and stainless steelsemphasizing environments in which they find extensive applications	20	CO5