

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, December 2021

Course: Hazard Identification and Computer Aided Risk Analysis

Semester: V Program: B. Tech. FSE Time 03 hrs.

Course Code: HSFS 4002 Max. Marks: 100

SECTION A

Each Question carries 5 Marks

S. No.	Question	CO
Q 1	Write short note on:	CO1
	a. i-SAFE Index	
	b. Environmental Stability Conditions	
Q 2	List prerequisites, data source and team of Preliminary Hazard Analysis.	CO2
Q 3	List all loss control credit factors along with calculation steps.	CO2
Q 4	Write step by step procedure of Event Tree Analysis.	CO1
Q 5	Describe various strategies of Inherent Safety along with examples.	CO2

SECTION B

Each question carries 10 marks

Q 6	What is CEI? Explain uses of CEI. Write complete procedures for calculation of CEI.	CO3
Q 7	With the help of any practical scenario proof that, "failure probability values using minimum cut sets method is greater than the values of actual fault tree method".	CO4
Q 8	Briefly discuss below mentioned points: 1. History of HAZOP with the help of two examples of accidents 2. Objectives of HAZOP 3. Procedure of HAZOP 4. Advantages of HAZOP over other risk assessment tools.	CO4
Q 9	Calculate the degree of hazard for given data: General process hazard factor = 17.2, Special process hazard factor = 4.8 MF ₁ = 4.8 (20%), MF ₂ = 7.9 (35%), MF ₃ = 10.25 (45%) and MF ₄ = 12.6 (remain)	CO3

Section C

Each Question carries 20 Marks.

Q 10	A 2- inch nozzle fails on the bottom of the spherical vessel (capacity = $1.134*10^6$ kg)	CO5
	allowing liquid chlorine to escape. Calculate: leakage size, CEI and HD for given	
	Information:	
	Pressure inside the cylinder = 332 kPa gauge, height of liquid = 600 cm, Density = 1458 kg/m³, Liquid releasing time = 0.25 hr, ambient air temperature = 34 °C, normal boiling point temperature = 241 K, Storage temperature = 41 °F, ERPG-1 = 3 mg/m³, ERPG-2 = 9 mg/m³, ERPG-3 = 58 mg/m³, Strength of Airborne Chlorine = 66.3 Kg/s, wind speed = 4.8 m/s.	
Q 11	Describe PROBIT methods for effect modelling and brief various technique available to find out probability using PROBIT values.	CO4