Name: Enrolment No:		
Course: \quad Probability Theory \& Statistics Semester: V Program: B.Sc. (Hons.) Mathematics Time: $\mathbf{0 3}$ hrs. Course Code: MATH 3013 Max. Marks: $\mathbf{1 0 0}$ Instructions: All questions are compulsory.		
SECTION A (Each question carries 4 marks)		
S. No.		Marks
Q1	Let the first four moments of a distribution about the value 5 be $2,20,40$ and 50 then find the Variance of the distribution.	CO1
Q2	If X represents the outcome, when a fair die is tossed, then evaluate the moment generating function of X .	CO1
Q3	A random variable X has an exponential distribution with probability density function given by $f(x)=3 e^{-3 x}$, for $x>0$ and zero elsewhere then determine the probability that X is not less than 5 .	CO2
Q4	If $f(x, y)=k(1-x)(1-y), 0<x, y<1$, is a joint density function then find the value of k.	CO3
Q5	The transition probability matrix of a Markov chain $\left\{X_{n}\right\}, n=1,2,3 \ldots$... Having three states 1,2 and 3 is $p=\begin{array}{rrr}0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2\end{array}$ and the initial distribution is $p^{(0)}=$ $(0.7,0.2,0.1)$ then evaluate $P\left\{X_{1}=3, X_{0}=2\right\}$.	$\mathrm{CO5}$
SECTION B (Each question carries 10 marks)		
Q6	If 10% of the bolts produced by a machine are defective, determine the probability that out of 10 bolts chosen at random (a) One bolt will be defective. (b) None will be defective. (c) At most two bolts will be defective.	CO2
Q7	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y).	CO3
Q8	Examine if the weak law of large numbers holds for the sequence $\left\{X_{p}\right\}$ of independent identically distributed random variables with $P\left[X_{k}=(-1)^{k-1} \cdot k\right]=\frac{6}{\pi^{2} k^{2}}, k=$ $1,2, \ldots ; p=1,2, \ldots$.	CO4

