UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Programme Name: B. Sc. (Hons.) Mathematics
Course Name : Analytical Geometry
Course Code: MATH 3010D

Semester : V
Time : 03 hrs
Max. Marks : 100

	Section A (All questions are compulsory, each question is of $\mathbf{4}$ marks)	$\begin{gathered} \text { Mar } \\ \text { ks } \end{gathered}$	CO
1.	Test whether the circles $x^{2}+y^{2}-2 x-3=0$ and $x^{2}+y^{2}-4 x-6 y-8=0$ intersect each other or not.	4	CO1
2.	Show that the sections of ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by the co-ordinate planes are ellipses.	4	CO4
3.	Discuss the reflection property of the parabola.	4	CO2
4.	Two parabolas $y^{2}=4 a\left(x-\lambda_{1}\right)$ and $x^{2}=4 a\left(y-\lambda_{2}\right)$ always touch each other $\left(\lambda_{1}, \lambda_{2}\right.$ being variable parameters). Then their point of contact lies on a........(straight line/ circle/ parabola/ hyperbola).	4	CO 3
5.	Show the following statements are true for the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ A. Its section by the $y z$-plane is a hyperbola. B. Its section by the $z x$-plane is a hyperbola.	4	CO4
SECTION B(All questions are compulsory and Q4 has internal choices, each question is of 10 marks)			
1.	Let P be a point on an ellipse with foci F and F^{\prime}, and let T be the tangent at P, as shown in the following figure. If T makes angles α and β with the two focal radii $P F$ and $P F^{\prime}$, then prove that $\alpha=$ β.	10	CO2
2.	Identify the graph of $16 x^{2}-9 y^{2}-64 x-18 y+k=0$ for various values of k (k is a real number).	10	CO 3
3.	Find the equation of the cone whose vertex is $(1,1,1)$ and base is the circle $x^{2}+y^{2}=4, z=2$.	10	$\mathrm{CO4}$
4.	Identify the graph of $16 x^{2}+25 y^{2}=400$, and find its vertices, foci, eccentricity, and directrices, and sketch its graph. OR Classify and sketch the curve $x^{2}-8 x-y+19=0$.	10	CO1

SECTION C (All questions are compulsory, each question is of $\mathbf{2 0}$ marks and has internal choices)			
$\mathbf{1}$	A plane passes through a fixed point (a, b, c) and cuts the axes in A, B, C. show that the locus of the centre of the sphere $O A B C(O$ is the origin) is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$	$\mathbf{2 0}$	
$\mathbf{2}$	Let F be a point, which is inside a given circle but is not the center C. Consider a point P that moves in such a way as to be equidistant from F and the circle. Show that the path of P is an ellipse. OR Show that the lines tangent to a parabola at the ends of a focal chord (a chord through the focus) intersect on the directrix.	$\mathbf{2 0}$	$\mathbf{C O 4}$

