

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Programme Name: B. Sc. (Hons.) Mathematics Course Name : Analytical Geometry Course Code: MATH 3010D Semester : V Time : 03 hrs Max. Marks : 100

	Section A (All questions are compulsory, each question is of 4 marks)	Mar ks	CO
1.	(All questions are compulsory, each question is of 4 marks) Test whether the circles $x^2 + y^2 - 2x - 3 = 0$ and $x^2 + y^2 - 4x - 6y - 8 = 0$ intersect each other or not.	4	CO1
2.	Show that the sections of ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by the co-ordinate planes are ellipses.	4	CO1 CO4
3.	Discuss the reflection property of the parabola.	4	CO2
4.	Two parabolas $y^2 = 4a (x - \lambda_1)$ and $x^2 = 4a (y - \lambda_2)$ always touch each other (λ_1 , λ_2 being variable parameters). Then their point of contact lies on a(straight line/circle/parabola/hyperbola).	4	CO3
5.	Show the following statements are true for the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ A. Its section by the <i>yz</i> -plane is a hyperbola. B. Its section by the <i>zx</i> -plane is a hyperbola.	4	CO4
	SECTION B (All questions are compulsory and Q4 has internal choices, each question is of 10 marks)		
1.	Let <i>P</i> be a point on an ellipse with foci <i>F</i> and <i>F'</i> , and let <i>T</i> be the tangent at <i>P</i> , as shown in the following figure. If <i>T</i> makes angles α and β with the two focal radii <i>PF</i> and <i>PF'</i> , then prove that $\alpha = \beta$.	10	CO2
2.	Identify the graph of $16x^2 - 9y^2 - 64x - 18y + k = 0$ for various values of k (k is a real number).	10	CO3
3.	Find the equation of the cone whose vertex is (1, 1, 1) and base is the circle $x^2 + y^2 = 4$, $z = 2$.	10	CO4
4.	Identify the graph of $16x^2 + 25y^2 = 400$, and find its vertices, foci, eccentricity, and directrices, and sketch its graph. OR Classify and sketch the curve $x^2 - 8x - y + 19 = 0$.	10	C01

	SECTION C (All questions are compulsory, each question is of 20 marks and has internal choices)		
1	A plane passes through a fixed point (a, b, c) and cuts the axes in A, B, C. show that the locus of the centre of the sphere OABC (O is the origin) is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$	20	CO4
2	Let F be a point, which is inside a given circle but is not the center C . Consider a point P that moves in such a way as to be equidistant from F and the circle. Show that the path of P is an ellipse. OR Show that the lines tangent to a parabola at the ends of a focal chord (a chord through the focus) intersect on the directrix.	20	C03