UPES			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
End Semester Examination, 2021			
Programme: B.Sc. (Hons.) Mathematics Semester: V			
Course Name: Group Theory IIMax. Marks: 100Course Code: MATH 3022Duration: 3 Hrs.			
No. of	f page/s: 02		
Atter	Section A npt all the questions. Each question carries 4 marks.		
(Scan and upload)			
1.	Let $G = \{(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), (24)(56)\}$	CO3	
	Find the stabilizer of 1 and orbit of 1.		
2.	How many elements are of order 2 are in $Z_{2000000} \oplus Z_{4000000}$. Generalize.	CO2	
3.	What is the order of the factor group $(Z_{10} \oplus U(10))/\langle (2,9) \rangle$?	CO5	
4.	Find all Abelian groups (up to isomorphism) of order 360.	CO1	
5.	Explain why the correspondence $x \rightarrow 3x$ from Z_{12} to Z_{10} is not a homomorphism.	CO2	
	SECTION B		
Attempt all the questions. Each question carries 10 marks.			
(Scan and upload)			
6.	Up to isomorphism, how many additive Abelian groups of order 16 have the property that $t + t + t + t = 0$ for all t in the group?	CO2	
7.	Suppose that $\varphi: Z_{50} \to Z_{15}$ is a group homomorphism with $\varphi(7) = 6$. a. Determine $\varphi(x)$		
	 a. Determine φ(x) b. Determine the kernel of φ c. Determine φ⁻¹(3). 	CO2	
8.	Determine how many elements of $Aut(Z_{720})$ have order 6. Also, determine the isomorphism class of $Aut(Z_2 \bigoplus Z_3 \bigoplus Z_5)$	CO1	
	Write down the class equation for the symmetric group S_5 .		
9.	OR Determine the class equation for non-abelian groups of orders 39 and 55.	CO3	

SECTION C Attempt all the questions. Each question carries 20 marks. (Scan and upload)		
10.	State the Sylow Theorem on the existence of a subgroup of prime-power order. Hence proof the theorem by mathematical induction.	CO4
11.	 a. Let <i>G</i> be a group and <i>G</i> = 30. Show that either Sylow 3-Subgroup or Sylow 5-subgroup is normal in <i>G</i>. b. Let <i>G</i> be a group and <i>G</i> = <i>pq</i>, where <i>p</i>, <i>q</i> are distinct primes, <i>p</i> < <i>q</i> and <i>p</i> does not divide <i>q</i> - 1. Show that <i>G</i> is cyclic. 	CO5
11.	 OR a. Let <i>G</i> be a group and <i>G</i> = 30. Show that either Sylow 3-Subgroup or Sylow 5-subgroup is normal in <i>G</i>. b. Show that there is no simple group of order 216. 	05