UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, 2021
Programme: B.Sc. (Hons.) Mathematics
Course Name: Group Theory II
Course Code: MATH 3022
No. of page/s: 02

Section A

Attempt all the questions. Each question carries 4 marks.
(Scan and upload)

1.	Let $G=\{(1),(12)(34),(1234)(56),(13)(24),(1432)(56),(56)(13)$, $(14)(23),(24)(56)\}$ Find the stabilizer of 1 and orbit of 1.	$\mathbf{C O 3}$
2.	How many elements are of order 2 are in $Z_{2000000} \oplus Z_{4000000 . ~ G e n e r a l i z e . ~}$	$\mathbf{C O 2}$
3.	What is the order of the factor group $\left(Z_{10} \oplus U(10)\right) /\langle(2,9)\rangle ?$	$\mathbf{C O 5}$
4.	Find all Abelian groups (up to isomorphism) of order 360.	$\mathbf{C O 1}$
5.	Explain why the correspondence $x \rightarrow 3 x$ from Z_{12} to Z_{10} is not a homomorphism.	$\mathbf{C O 2}$

SECTION B

Attempt all the questions. Each question carries 10 marks.
(Scan and upload)

6.	Up to isomorphism, how many additive Abelian groups of order 16 have the property that $t+t+t+$ $t=0$ for all t in the group?	$\mathbf{C O 2}$
7.	Suppose that $\varphi: Z_{50} \rightarrow Z_{15}$ is a group homomorphism with $\varphi(7)=6$. a. Determine $\varphi(x)$ b. Determine the kernel of φ c. Determine $\varphi^{-1}(3)$.	$\mathbf{C O 2}$
$\mathbf{8 .}$	Determine how many elements of $\operatorname{Aut}\left(Z_{720}\right)$ have order 6. Also, determine the isomorphism class of Aut $\left(Z_{2} \oplus Z_{3} \oplus Z_{5}\right)$	$\mathbf{C O 1}$
9.	Write down the class equation for the symmetric group S_{5}. OR	$\mathbf{C O 3}$

SECTION C

Attempt all the questions. Each question carries 20 marks.
 (Scan and upload)

10.	State the Sylow Theorem on the existence of a subgroup of prime-power order. Hence proof the theorem by mathematical induction.	$\mathrm{CO4}$
11.	a. Let G be a group and $\|G\|=30$. Show that either Sylow 3-Subgroup or Sylow 5 -subgroup is normal in G. b. Let G be a group and $\|G\|=p q$, where p, q are distinct primes, $p<q$ and p does not divide $q-1$. Show that G is cyclic. OR a. Let G be a group and $\|G\|=30$. Show that either Sylow 3-Subgroup or Sylow 5-subgroup is normal in G. b. Show that there is no simple group of order 216 .	$\mathrm{CO5}$

