Name:					L1 UF	PES			
Enrolment No:				UNIVERSITY WITH A PURPOSE					
	UN	IVERSITY	OF PETRO	LEUM A	ND ENERGY S	TUDIES			
End Semester Examination, December 2021Course:Numerical MethodsSeProgram:B.Sc. (Hons.) MathematicsTi						emester: V 'ime : 03 hrs. ax. Marks: 100			
Instru	ctions: Scientific calcu	lator is allow	SE((5)	CTION A X 4 = 20)	nulsorv				
S. No.		All questions are compulsory.							
Q1	Evaluate the smallest positive root of $x^3 - 5x + 3 = 0$ by Newton Raphson Method.						4	CO1	
Q2	Find the missing terms in the given table								
	X 45	50	55	60	65		4	CO2	
	Y 3.0		2.0		-2.4				
Q3	Evaluate $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$							CO2	
Q4	Using Trapezoidal rule, calculator $\int_0^1 \frac{1}{1+x^2} dx$ using 5 intervals.						4	CO3	
Q5	Use Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that								
	$\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.						4	CO5	
				CTION B					
		0 1-03 are	(X 10 = 40) y and O4	nave internal cl	noice			
Q1	Q 1-Q3 are compulsory and Q4 have internal choiceDifferentiate between round off error and truncation error with help of an example.								
	The diameter and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in each measurement is 0.01cm. Find the maximum possible relative error in computation of its volume.						10	CO1	
Q2	Three neighbors make a fruit salad for a summer picnic. One person uses three pounds of strawberries plus five pounds of grapes plus one pound of melon at a cost of \$20. A second person uses three pounds of strawberries plus two pounds of grapes plus two pounds of melon at a cost of \$21. The last neighbor uses four pounds of strawberries plus three pounds of grapes plus three pounds of melon at a cost of \$30. Using Gauss Jordan method find how much does each fruit cost?						10	CO4	
Q3	Solve the following using Gauss Seidal Method.								
	$-2x_1 + 3x_2 + 10x_3 = 22$								
	$2x_1 + 20x_2 - 2x_3 = -44$						10	CO4	
	$10x_1 + 2x_2 + x_3 = 9$								

Q4	X	find the value of U1 -1 0			2 3					
	Ux	-8		3		1	12			
	OR							10		
	Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$							lp of	10	CO2
	x	-4	-1	0		2	5			
	f(x)	1245	33	5		9	1335			
			Q1 is comp	(2 X	CTION-C X 20 = 40) d Q2 have	e internal	choices			
Q1	Q1 is compulsory and Q2 have internal choices (a) Use fourth order Runge-Kutta method to solve for y(1.2), considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, $y(1) = 1.5$. (b) Use Modified Euler's method to solve for y(0.4), considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$.									CO5
Q2	$\frac{dy}{dx} = 1 + y^2, \ y(0) = 0.$ (a) Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR						exact			
	A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines $x = 0$ and $x = 1$, and a curve through the points with the following coordinates									
	х	0.00	0.25	0.50	0.75	1.00				
	у	1.0000	0.9896	0.9589	0.9089	0.8415				
	 Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 0.1 second ii) t = 0.6 second. 							-	10+10	CO3
	t (0.1	0.2	0.3	0.4	0.5	0.6			
	x 3	30.13 31.62	2 32.87	33.64	33.95	33.81	33.24			
	OR									
	From the following table, find x, correct to two decimal places for which y is max and find this value of y							nd		
	x 1.2 1.3 1.4 1.5 1.6									
	y 0.9320 0.9636 0.9855 0.9975 0.9996									