Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, November/December 2021

Course: Quantum Mechanics and Applications
Course Code: PHYS3001
Programme: BSc Physics (H)
Total pages: 2

Semester: V
Max. Marks: 100
Time: 03 hrs .

Instructions:

- All questions are compulsory (Q9 and Q11 have internal choice)
- Use blank paper as rough work to solve the questions in section-A and write only the correct options (type answers, no upload)

SECTION-A			
S. No.		Marks	CO
Q1.	What wavelength (λ) of photons can eject electron from target metal surface if work function energy of the target plate is 3.22 eV ? (a) $\lambda \geq 390 \mathrm{~nm}$, (b) $\lambda>425 \mathrm{~nm}$, (c) $\lambda \leq 385 \mathrm{~nm}$, (d) any λ	4	CO1
Q2.	The number of anti-nodes for $\mathrm{n}=5$ state for a particle in a potential box of length L (between 0 to L) is (a) 3, (b) 4, (c) 2, (d) 5	4	CO1
Q3.	For a given wavefunction, $\psi(x)=\frac{1}{\sqrt{2}}\left(\psi_{0}(x)+\psi_{1}(x)\right)$, the average energy of the 1D harmonic oscillator is (a) $\frac{1}{2} \hbar \omega$, (b) $\frac{3}{2} \hbar \omega$, (c) $\hbar \omega$, (d) $\frac{5}{2} \hbar \omega$	4	CO2
Q4.	L_{z} operator is a function of (a) r, θ, ϕ, (b) θ, ϕ, (c) r, ϕ, (d) ϕ only.	4	CO3
Q5.	Choose the correct option. The value of $\boldsymbol{g m}_{\boldsymbol{j}}$ for the state ${ }^{2} \mathrm{P}_{3 / 2}=$ (a) $2 / 3,1 / 3,-1 / 3,-$ $2 / 3$, (b) $2,2 / 3,-2 / 3,-2$, (c) $2 / 3,-2 / 3$, (d) $1 / 3,-1 / 3$.	4	CO4

SECTION-B

Q6.	An electron is moving with non-relativistic speed $\mathrm{v}=0.005 \mathrm{c}$. What de Broglie wavelength is associated with this particle?	$\mathbf{1 0}$	$\mathbf{C O 1}$

\begin{tabular}{|c|c|c|c|}
\hline Q7. \& Covert \(\hat{L}_{z}=\mathrm{xp}_{\mathrm{y}}-\mathrm{yp} \mathrm{x}_{\mathrm{x}}\) in spherical polar coordinates. \& 10 \& CO2 \\
\hline Q8. \& Normalize the wavefunction \(\Psi_{\mathrm{N}}(\mathrm{x})\). Assume, \(\Psi_{\mathrm{N}}(\mathrm{x})\) is normalizable between \(\mathrm{x}=\) 0 to L (wavefunction is associated with a particle in a quantum mechanical box of length L).
\[
\Psi_{\mathrm{N}}(\mathrm{x})=\mathrm{N} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right), \quad \mathrm{n}=\text { integers }
\] \& 10 \& CO2 \\
\hline Q9. \& \begin{tabular}{l}
Solve differential equation for radial part to obtain radial wavefunction of spherically symmetric potential \\
OR \\
Derive the expression for energy for nth state by solving radial wavefunction of hydrogen like atom.
\end{tabular} \& 10 \& \(\mathrm{CO3}\) \\
\hline \multicolumn{4}{|c|}{SECTION-C} \\
\hline Q10. \& \begin{tabular}{l}
(a) Using dimensional analysis prove that \(\left[\mathrm{a}_{0}\right]=\left[4 \pi \varepsilon_{0} \hbar^{2} / \mathrm{me}^{2}\right]=[\mathrm{L}]\). \\
(b) Prove that most probable distance of the electron in hydrogen atom appears to be, \(r=a_{0}\), where \(a_{0}\) is Bohr radius.
\end{tabular} \& 10 \& \[
\begin{aligned}
\& \hline \mathrm{CO} 3 \\
\& \mathrm{CO}
\end{aligned}
\] \\
\hline Q11. \& \begin{tabular}{l}
(a) What is spin-orbit coupling? Analyse spin-orbit interaction and detailed transition with energy levels (say, \(2 p \rightarrow 1 s\)). \\
(b) Calculate Lande ' \(g\) ' factor for the state: \(3^{2} \boldsymbol{D}_{3 / 2}\) \\
OR \\
(a) State Zeeman effect. Analyse energy level splitting and transitions with level diagram (say, transition occurs between \(2 \mathrm{p} \rightarrow 1 \mathrm{~s}\)) \\
(b) Apply space quantization concept to draw diagrams for space quantization of \(\mathbf{J}\) (total angular momentum) about z -axis for \(l=1\) state.
\end{tabular} \& 10
10

10

10 \& | CO4 |
| :--- |
| CO4 |
| CO4 |
| CO4 |

\hline
\end{tabular}

Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, mass of proton $=1.6726 \times 10^{-27} \mathrm{Kg}$, mass of electron $=9.1 \times 10^{-31} \mathrm{Kg}$

