Name:			,			
Enrolment No: UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, November/December 2021 Course: Quantum Mechanics and Applications Semester: V Course: Quantum Mechanics and Applications Semester: V Course Code: PHYS3001 Max. Marks: 100 Programme: BSc Physics (H) Max. Marks: 100 Total pages: 2 Time: 03 hrs. Instructions: • All questions are compulsory (Q9 and Q11 have internal choice) • Use blank paper as rough work to solve the questions in section-A and write only the correct options (type answers, no upload)						
SECTION-A						
S. No.			Marks	СО		
Q1.	What wavelength (λ) of photons can ejec function energy of the target plate is 3.22 (a) $\lambda \ge 390$ nm, (b) $\lambda > 425$ nm, (c) $\lambda \le 320$		4	CO1		
Q2.	The number of anti-nodes for $n = 5$ state (between 0 to L) is (a) 3, (b) 4, (c) 2, (d) 5	for a particle in a potential box of length L	4	CO1		
Q3.	For a given wavefunction, $\psi(x) = \frac{1}{\sqrt{2}} (\psi(x))^2$ 1D harmonic oscillator is (a) $\frac{1}{2}\hbar\omega$, (b) $\frac{3}{2}\hbar\omega$	$\psi_0(x) + \psi_1(x)$, the average energy of the $\hbar\omega$, (c) $\hbar\omega$, (d) $\frac{5}{2}\hbar\omega$	4	CO2		
Q4.	L_z operator is a function of (a) r, θ , ϕ , (b)	θ , ϕ , (c) r, ϕ , (d) ϕ only.	4	CO3		
Q5.	Choose the correct option. The value of 2/3, (b) 2, 2/3, -2/3, -2, (c) 2/3, -2/3, (d) 1/	gm_j for the state ${}^2P_{3/2} = (a) 2/3, 1/3, -1/3, -1/3, -1/3$.	4	CO4		
SECTION-B Q6. An electron is moving with non-relativistic speed $v = 0.005c$. What de Broglie 10 CO1						
	wavelength is associated with this particle	??	10	CO1		

Q7.	Covert $\hat{L}_z = xp_y - yp_x$ in spherical polar coordinates.		CO2	
Q8.	Normalize the wavefunction $\Psi_N(x)$. Assume, $\Psi_N(x)$ is normalizable between $x = 0$ to L (wavefunction is associated with a particle in a quantum mechanical box of length L). $\Psi_N(x) = N \sin\left(\frac{n\pi x}{L}\right), n = integers$		CO2	
Q9.	Solve differential equation for radial part to obtain radial wavefunction of spherically symmetric potential OR Derive the expression for energy for nth state by solving radial wavefunction of hydrogen like atom.		СО3	
	SECTION-C			
Q10.	(a) Using dimensional analysis prove that $[a_0] = [4\pi\epsilon_0\hbar^2/me^2] = [L].$			
	(b) Prove that most probable distance of the electron in hydrogen atom appears to be, $r = a_0$, where a_0 is Bohr radius.		CO3	
Q11.	 (a) What is spin-orbit coupling? Analyse spin-orbit interaction and detailed transition with energy levels (say, 2p → 1s). (b) Calculate Lande 'g' factor for the state: 3 ²D_{3/2} 	10 10	CO4 CO4	
	OR			
	 (a) State Zeeman effect. Analyse energy level splitting and transitions with level diagram (say, transition occurs between 2p→1s) 	10	CO4	
	(b) Apply space quantization concept to draw diagrams for space quantization of J (total angular momentum) about z-axis for $l = 1$ state.	10	CO4	
Physi	cal constants: $h = 6.63 \times 10^{-34} J - s$, $c = 3 \times 10^8 m/s$, $k_B = 1.38 \times 10^{-23} J/K$, $\mu_0 = \epsilon_0 = 8.854 \times 10^{-12} F/m$, mass of proton = 1.6726 x 10^{-27} Kg, mass of electron = 9.1 x			